首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The elastic properties of Ni x W1?x alloys up to x = 0.1875 have been determined from first principles calculations. We have used stress–strain relationships to calculate the C ij elastic coefficients and the Voigt–Reuss–Hill approximations to determine the bulk and shear moduli of polycrystals. The W alloying increases the compression modulus while the shear modulus remains almost constant. Furthermore, the W alloying has a minor effect on the elastic anisotropy and, therefore, on its contribution to the indentation modulus.  相似文献   

2.
The current study has investigated the influence of zirconium (Zr) addition to Mg–3Ca–xZr (x = 0.3, 0.6, 0.9 wt%) alloys prepared using argon arc melting on the microstructure and impression properties at 448–498 K under constant stress of 380 MPa. Microstructural analysis of as-cast Mg–3Ca–xZr alloys showed grain refinement with Zr addition. The observed grain refinement was attributed to the growth restriction effect of Zr in hypoperitectic Mg–3Ca–0.3 wt% Zr alloys. Heterogeneous nucleation of α-Mg in properitectic Zr during solidification resulted in grain refinement of hyperperitectic Mg–3Ca–0.6 wt% Zr and Mg–3Ca–0.9 wt% Zr alloys. The hardness of Mg–3Ca–xZr alloys increased as the amount of Zr increased due to grain refinement and solid solution strengthening of α-Mg by Zr. Creep resistance of Mg–3Ca–xZr alloys increased with the addition of Zr due to solid solution strengthening of α-Mg by Zr. The calculated activation energy (Qa) for Mg–3Ca samples (131.49 kJ/mol) was the highest among all alloy compositions. The Qa values for 0.3, 0.6 and 0.9 wt% Zr containing Mg–3Ca alloys were 107.22, 118.18 and 115.24 kJ/mol, respectively.  相似文献   

3.
The data on the Ni-Al-R (R = REM Sc, Y, La, lanthanides) binary and ternary systems and the interactions of three rare-earth metals (yttrium, lanthanum, cerium) with the main alloying elements (Ti (Zr, Hf), Cr (Mo, W) that are introduced into Ni3Al-based VKNA alloys are analyzed. The binary aluminides of REMs in the Ni-Al-R ternary systems are shown to be in equilibrium with neither NiAl nor Ni3Al. The solid solution of aluminum in RNi5, which penetrates deep into these ternary systems, is the most stable phase in equilibrium with Ni3Al. In the NiAl (Ni3Al)-AE-R systems, REM precipitation (segregation) on various defects and interfaces in nickel aluminides is likely to be the most probable, and REMs are thought to interact with the most active impurities in real alloys (C, O, N), since REMs have a large atomic radius and, thus, are virtually undissolved in nickel, aluminum, and nickel aluminides.  相似文献   

4.
Dissimilar material joining between Al alloys and steel may be effective in decreasing the weight of automobile bodies. In this study, dissimilar lap joining of Al alloys containing certain alloying elements, such as Ni, Cr, Mn, Ti, or Si, to interstitial-free steel was performed by tungsten inert gas arc brazing, and the effect of the alloying element on the joint strength associated with the Al-Fe intermetallic compound layer at the dissimilar interface was examined. The addition of an appropriate amount of an alloying element to the alloy increased the joint strength; the addition of Ni exhibited the most effective improvement. The additions of some elements changed the grain structure of the η-Fe2Al5 layer but not its chemical composition. This is the first study to clarify that smaller grain size of η-Fe2Al5 correlated to greater strength of the Al/Fe dissimilar joint.  相似文献   

5.
Features of equilibrium crystallization of alloys in a ternary system consisting of solid and liquid solutions of components A, B, and C with melting points related as t C < t A < t B are investigated in detail. It is demonstrated that, in alloys of any composition, the distribution coefficients of components B and C are k B > 1 and k C < 1, respectively. For the component A, this characteristic, depending on the alloy composition, can be either larger or smaller than unity, and at temperature t A , k A = 1.  相似文献   

6.
Temperature and solute concentration effects on the friction stress, σo, of cast (texture-free) polycrystals of pure Mg, and of Mg-Al, -Zn and -Gd binary solid solutions are discussed using phenomenological arguments. The temperature effects on the pure metal suggest that σo relates to the ratio between the CRSS of prism and basal slip, against early suggestions that it should only relate to the CRSS for basal slip. Solid solution softening upon prism slip accounts for the minima in σo at ~ 0.5 at. pct in Mg-Zn and Mg-Gd alloys. In the concentrated alloys, solute-specific hardening effects upon slip and twinning lead to diverging behaviors: in Mg-Al and Mg-Zn, σo remains below that of pure Mg. Strong short-range order by Gd leads to a steep monotonic increase, and to a value larger in compression than in tension due to the activation of {10-11} twinning at high concentrations. The negative σo of the dilute Mg-Zn alloys is an artifact created by the tension/compression asymmetry stemming from the polar character of {10-12} twinning.  相似文献   

7.
Ti-7Al is a good model material for mimicking the α phase response of near-α and α+β phases of many widely used titanium-based engineering alloys, including Ti-6Al-4V. In this study, three model structures of Ti-7Al are investigated using atomistic simulations by varying the Ti and Al atom positions within the crystalline lattice. These atomic arrangements are based on transmission electron microscopy observations of short-range order. The elastic constants of the three model structures considered are calculated using molecular dynamics simulations. Resonant ultrasound spectroscopy experiments are conducted to obtain the elastic constants at room temperature and a good agreement is found between the simulation and experimental results, providing confidence that the model structures are reasonable. Additionally, energy barriers for crystalline slip are established for these structures by means of calculating the γ-surfaces for different slip systems. Finally, the positions of Al atoms in regards to solid solution strengthening are studied using density functional theory simulations, which demonstrate a higher energy barrier for slip when the Al solute atom is closer to (or at) the fault plane. These results provide quantitative insights into the deformation mechanisms of this alloy.  相似文献   

8.
The enthalpy of mixing of liquid Cu-Ti-Zr ternary alloys is studied by high-temperature isoperibolic calorimetry at 1873 K along three ray sections characterized by the ratios x Zr: x Cu = 3: 7, x Ti: x Cu = 3: 7, and x Zr: x Ti = 1 at x Cu = 1?0.4. The isotherm of the integral enthalpy of mixing of these melts is described in terms of the Redlich-Kister-Muggianu model. Along with the substantial contributions of binary copper-titanium and copper-zirconium interactions, the contribution of a ternary interaction to the enthalpy of mixing of liquid Cu-Ti-Zr alloys also exists. The first partial enthalpies of mixing of Ni, Al, Si, Sn, and Y with the melts are studied to determine the character of the interaction between the ternary Cu-Ti-Zr melts and metal additions that facilitate amorphization upon melt quenching. The introduction of these metals into the ternary melts is shown to increase their thermodynamic stability.  相似文献   

9.
Regularities of dissolution, phase formation, and structure formation during the interaction of double carbides (Ti1–n Me n IV, V )C with the Ni–25%Mo melt (t = 1450°C, τ = 1 h, vacuum 10–1 Pa) are investigated for the first time by electron probe microanalysis and scanning electron microscopy. The role of each alloying metal in the composition and microstructure formation of studied compositions is revealed. It is established that Group IV alloying metals (Zr and Hf) almost do not enter the composition of the forming K-phase (carbide Ti1–n Mo n C x ); therefore, its composition is independent of their concentration in double carbide. In contrast with zirconium and hafnium, Group V alloying metals (V and Nb) actively participate in the formation of the K-phase; however, the dependences of the composition of the K-phase and metallic matrix on the vanadium and niobium content are the opposite in this case. An interpretation of the causes of these distinctions is proposed.  相似文献   

10.
The influence of alloying TiC0.5N0.5 carbonitride by transition metals of Group V (V, Nb, and Ta) on the contact interaction mechanism with the Ni–25%Mo melt (T = 1450°C, τ = 1 h, rarefaction is 5 × 10–2 Pa) is systematically studied by X-ray spectral microanalysis and scanning electron microscopy for the first time. It is established that the dissolution of single-type Ti1 –n\({\text{Me}}_{n}^{{\text{V}}}\)C0.5N0.5 carbonitrides (n = 0.05) is an incongruent process (alloying metal and carbon preferentially transfer into the melt), and the relative rate and degree of incongruence of the dissolution process of carbonitrides in a series of alloying metals V–Nb–Ta vary nonmonotonically. An explanation for the discovered effects is proposed. The causal-effect relation between the initial composition of Ti0.95\({\text{Me}}_{{0.05}}^{{\text{V}}}\)C0.5N0.5 carbonitride (the grade of the alloying metal) and composition of the Ti1 – – mMon\({\text{Me}}_{m}^{{\text{V}}}\)Cx K-phase that is precipitated from the melt upon system cooling is analyzed. It is shown that the factor determining the composition of the forming K-phase is the ΔT factor (the degree of exceeding crystallization temperatures of carbide eutectics Ni/MeVC over the crystallization temperature of the Ni/Mo2C eutectic that is the lowest melting in these systems). The conclusion is argued that the interrelation between the initial carbonitride composition and the composition of the K-phase is a consequence of a microinhomogeneous structure of metallic alloys. It is shown that this interrelation is rather common and manifests itself in all studied systems irrespective of the type of alloying Group V metal and presence or absence of molybdenum in the melt.  相似文献   

11.
The Fe3Al iron aluminide alloyed by low concentrations of Nb and C (c Nb, c C) is studied. The influence of the c Nb/c C ratio on the structure and high-temperature yield strength of iron aluminide was investigated. The structure and phase composition were studied by scanning electron microscope equipped with EDS and EBSD. The strengthening mechanisms are detected as strengthening by incoherent precipitates of NbC and as a solid solution hardening by Nb atoms.  相似文献   

12.
When thin Al alloy sheets are clad on to twin-roll-cast Mg alloy melt, inherent drawbacks of Mg alloys such as poor formability, corrosion resistance, and surface quality can be effectively complemented. In this study, three-ply Al/Mg/Al clad sheets were fabricated by twin-roll casting and post-treatments. Brittle interfacial layers composed of γ (Mg17Al12) and β (Mg2Al3) phases were inevitably formed, but their proper thickening during the post-treatments led to improvement of interfacial bonding and resultant tensile properties. In particular, warm rolling was an effective way to modify interfacial microstructures and tensile properties by minimizing deformation inhomogeneity and stress concentration.  相似文献   

13.
By statistical analysis, a formula describing the tabular relationship between the Brinell (HB) and Rockwell hardness (HRC) of carbon steel is derived. Likewise, a formula relating HRC to the alloy strength σ u is found. The dependence of the coercive force H c of carbon steel on σ u is established on the basis of measurements of HRC and H c and σ u values calculated from the proposed formula. Results of assessing σ u on the basis of H c are presented for 30, 35, 45, U8, U10, and U12 steel.  相似文献   

14.
In many Ni-based superalloys, dynamic strain aging (DSA) generates an inhomogeneous plastic deformation resulting in jerky flow known as the Portevin–Le Chatelier (PLC) effect. This phenomenon has a deleterious effect on the mechanical properties and, at high temperature, is related to the diffusion of substitutional solute atoms toward the core of dislocations. However, the question about the nature of the atomic species responsible for the PLC effect at high temperature still remains open. The goal of the present work is to answer this important question; to this purpose, three different 718-type and a 625 superalloy were studied through a nonconventional approach by mechanical spectroscopy. The internal friction (IF) spectra of all the studied alloys show a relaxation peak P718 (at 885 K for 0.1 Hz) in the same temperature range, 700 K to 950 K, as the observed PLC effect. The activation parameters of this relaxation peak have been measured, Ea(P718)?=?2.68?±?0.05 eV, τ0?=?2·10?15 ± 1 s as well as its broadening factor β?=?1.1. Experiments on different alloys and the dependence of the relaxation strength on the amount of Mo attribute this relaxation to the stress-induced reorientation of Mo-Mo dipoles due to the short distance diffusion of one Mo atom by exchange with a vacancy. Then, it is concluded that Mo is the atomic species responsible for the high-temperature PLC effect in 718 superalloy.  相似文献   

15.
In the present study, tensile properties, strain hardening and fracture behavior of dual-phase (DP) steels were correlated with martensite volume fraction (V M ). A series of DP steels with different amounts of V M (28–50 %) were produced by cold rolling and subsequent intercritical annealing of a ferrite-pearlite starting structure. Hardness and tensile tests results of DP steels showed that variation of hardness, uniform elongation and total elongation with V M was linear and obeyed the rule of mixtures, whereas yield strength and ultimate tensile strength exhibited a nonlinear variation with V M . Analysis of strain hardening behavior of DP steels by the Hollomon analysis showed two stages of strain hardening corresponding to ferrite deformation and co-deformation of ferrite and martensite, respectively. The strain hardening exponent of first stage (n I ) increased with increasing V M , while the strain hardening exponent of second stage (n II ) as well as transition strain between the deformation stages decreased.  相似文献   

16.
Based on the power-law stress–strain relation and equivalent energy principle, theoretical equations for converting between Brinell hardness (HB), Rockwell hardness (HR), and Vickers hardness (HV) were established. Combining the pre-existing relation between the tensile strength (σ b ) and Hollomon parameters (K, N), theoretical conversions between hardness (HB/HR/HV) and tensile strength (σ b ) were obtained as well. In addition, to confirm the pre-existing σ b -(K, N) relation, a large number of uniaxial tensile tests were conducted in various ductile materials. Finally, to verify the theoretical conversions, plenty of statistical data listed in ASTM and ISO standards were adopted to test the robustness of the converting equations with various hardness and tensile strength. The results show that both hardness conversions and hardness-strength conversions calculated from the theoretical equations accord well with the standard data.  相似文献   

17.
Nonequilibrium interface kinetics (NEIK) is expected to play an important role in coupled growth of eutectic alloys, when solidification velocity is high and intermetallic compound or topologically complex phases form in the crystallized product. In order to quantitatively evaluate the effect of NEIK on the rapid coupled eutectic growth, in this work, two nonequilibrium interface kinetic effects, i.e., atom attachment and solute trapping at the solid–liquid interface, were incorporated into the analyses of the coupled eutectic growth under the rapid solidification condition. First, a coupled growth model incorporating the preceding two nonequilibrium kinetic effects was derived. On this basis, an expression of kinetic undercooling (?T k), which is used to characterize the NEIK, was defined. The calculations based on the as-derived couple growth model show good agreement with the reported experimental results achieved in rapidly solidified eutectic Al-Sm alloys consisting of a solid solution phase (α-Al) and an intermetallic compound phase (Al11Sm3). In terms of the definition of ?T k defined in this work, the role of NEIK in the coupled growth of the Al-Sm eutectic system was analyzed. The results show that with increasing the coupled growth velocity, ?T k increases continuously, and its ratio to the total undercooling reaches 0.32 at the maximum growth velocity for coupled eutectic growth. Parametric analyses on two key alloy parameters that influence ?T k, i.e., interface kinetic parameter (μ i ) and solute distribution coefficient (k e ), indicate that both μ i and k e influence the NEIK significantly and the decrease of either these two parameters enhances the NEIK effect.  相似文献   

18.
Since previous equations fail to predict M S temperature of high carbon ferrous alloys, we first propose an equation for prediction of M S temperature of ferrous alloys containing > 2 wt pct C. The presence of carbides (Fe3C and Cr-rich M 7C3) is thermodynamically considered to estimate the C concentration in austenite. Especially, equations individually specialized for lean and high Cr alloys very accurately reproduce experimental results. The chemical driving force for martensitic transformation is quantitatively analyzed based on the calculation of T 0 temperature.  相似文献   

19.
Dendritic spacing can affect microsegregation profiles and also the formation of secondary phases within interdendritic regions, which influences the mechanical properties of cast structures. To understand dendritic spacings, it is important to understand the effects of growth rate and composition on primary dendrite arm spacing (λ 1) and secondary dendrite arm spacing (λ 2). In this study, aluminum alloys with concentrations of (1, 3, and 5 wt pct) Zn were directionally solidified upwards using a Bridgman-type directional solidification apparatus under a constant temperature gradient (10.3 K/mm), resulting in a wide range of growth rates (8.3–165.0 μm/s). Microstructural parameters, λ 1 and λ 2 were measured and expressed as functions of growth rate and composition using a linear regression analysis method. The values of λ 1 and λ 2 decreased with increasing growth rates. However, the values of λ 1 increased with increasing concentration of Zn in the Al-Zn alloy, but the values of λ 2 decreased systematically with an increased Zn concentration. In addition, a transition from a cellular to a dendritic structure was observed at a relatively low growth rate (16.5 μm/s) in this study of binary alloys. The experimental results were compared with predictive theoretical models as well as experimental works for dendritic spacing.  相似文献   

20.
In the present study, microstructure and mechanical properties of A356 alloy including various amounts (0.2 to 1.2 wt pct) of iron were investigated. The alloys were produced by conventional gravity sand casting method. In order to determine the effect of iron addition to A356, optical and scanning electron microscopes (SEM/EDS) were used for microstructural examinations, and X-ray diffraction (XRD) analysis was carried out for phase characterization. Tensile tests were also conducted in order to determine effect of the Fe content on mechanical properties. It was found that as the Fe content of A356 was increased, the secondary dendrite arm spacing (SDAS) was decreased and the morphology of Al-Si eutectic became finer. From XRD examinations, different iron-based intermetallic compounds (β-Al5FeSi and α-Al8Fe2Si) formations were observed. It was also observed that as iron content increased, α-Al8Fe2Si intermetallic was transformed into β-Al5FeSi intermetallic. The tensile test results revealed that tensile strength and elongation values were reduced by increasing Fe content. It was also determined that β-Al5FeSi intermetallics were more negatively effective on tensile strength than α-Al8Fe2Si intermetallics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号