首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The commercial CFD code STAR-CD v4.02 is used as the numerical simulation tool for the supercritical water-cooled nuclear reactor (SCWR). The numerical simulation is based on the real full 3D rod bundles’ geometry of the nuclear reactors. For satisfying the near-wall resolution of y+ ≤ 1, the structure mesh with the stretched fine mesh near wall is employed. The validation of the numerical simulation for mesh generation strategy and the turbulence model for the heat transfer of supercritical water is carried out to compare with 3D tube experiments. After the validation, the same mesh generation strategy and the turbulence model are employed to study three types of the geometry frame of the real rod bundles. Through the numerical investigations, it is found that the different arrangement of the rod bundles will induce the different temperature distribution at the rods’ walls. The wall temperature distributions are non-uniform along the wall and the values depend on the geometry frame. At the same flow conditions, downward flow gets higher wall temperature than upward flow. The hexagon geometry frame has the smallest wall temperature difference comparing with the others. The heat transfer is controlled by P/D ratio of the bundles.  相似文献   

2.
The commercial CFD code STAR-CD v4.02 is used as a numerical simulation tool for flows in the supercritical water-cooled nuclear reactor (SCWR). The basic heat transfer element in the reactor core can be considered as round rods and rod bundles. Reactors with vertical or horizontal flow in the core can be found. In vertically oriented core, symmetric characters of flow and heat transfer can be found and two-dimensional analyses are often performed. However, in horizontally oriented core the flow and heat transfer are fully three-dimensional due to the buoyancy effect. In this paper, horizontal rods and rod bundles at SCWR conditions are studied. Special STAR-CD subroutines were developed by the authors to correctly represent the dramatic change in physical properties of the supercritical water with temperature. In the rod bundle simulations, it is found that the geometry and orientation of the rod bundle have strong effects on the wall temperature distributions and heat transfers. In one orientation the square bundle has a higher wall temperature difference than other bundles. However, when the bundles are rotated by 90° the highest wall temperature difference is found in the hexagon bundle. Similar analysis could be useful in design and safety studies to obtain optimum fuel rod arrangement in a SCWR.  相似文献   

3.
The Supercritical Water-cooled Reactor (SCWR) is one of the six concepts of the Generation IV International Forum. In Europe, investigations have been integrated into a joint research project, called High Performance Light Water Reactor (HPLWR). Due to the higher heat up within the core and a higher outlet temperature, a significant increase in turbine power and thermal efficiency of the plant can be expected.Besides the higher pressure and higher steam temperature, the design concept of this type of reactor differs significantly from a conventional LWR by a different core concept. In order to achieve the high outlet temperature of over 500 °C, a core with a three-step heat up and intermediate mixing is proposed to keep local cladding temperatures within today's material limits. A design for the reactor pressure vessel (RPV) and the internals has been worked out to incorporate a core arrangement with three passes. All components have been dimensioned following the safety standards of the nuclear safety standards commission in Germany. Additionally, a fuel assembly cluster with head and foot piece has been developed to facilitate the complex flow path for the multi-pass concept. The design of the internals and of the RPV is verified using mechanical or, in the case of large thermal deformations, combined mechanical and thermal stress analyses. Furthermore, the reactor design ensures that the total coolant flow path remains closed against leakage of colder moderator water even in case of large thermal expansions of the components. The design of the RPV and internals is now available for detailed analyses of the core and the reactor.  相似文献   

4.
Subchannel analyses have been carried out for supercritical water-cooled fast reactor fuel assembly. Peak cladding surface temperature difference arising from subchannel heterogeneities have been calculated by using the improved subchannel analysis code STARS and was evaluated to be about 18.5 °C. Several suggestions have been also made for reducing the PCST difference arising from channel heterogeneity. Influences of local power peaking on deflection of cladding surface temperature are explained with pin power distribution taken from core depletion calculation in this paper. Maximum cladding surface temperature at nominal condition is evaluated to be 645.3 °C over the cycle. Statistical thermal design uncertainty associated with PCST calculation is evaluated by Monte-Carlo sampling technique combined with subchannel analysis code. Maximum statistical design uncertainty of PCST is calculated to be 31 °C and is in a good agreement with that from RTDP method. Influence of downward flow in seed region on system sensitivity is investigated by improved Monte-Carlo thermal design procedure. Limiting thermal condition of MCST is 681 °C (650 °C of nominal + 31 °C) within 95/95 limit for SWFR.  相似文献   

5.
6.
《Annals of Nuclear Energy》2006,33(11-12):945-956
Fuel rod design for high power density supercritical water-cooled fast reactor was conducted with mixed-oxide (MOX) fuel and stainless steel (SUS304) cladding under the limiting cladding surface temperature of 650 °C. Fuel and cladding integrities, and flow-induced vibration were taken into account as design criteria. Designed fuel rod has the diameter of 7.6 mm and is arranged in the fuel assembly with pitch-to-diameter ratio of 1.14. New core arrangement for negative void reactivity is proposed by three-dimensional tri-z core calculation fully coupled with thermal hydraulic calculation, where ZrH layer concept is used for negative void reactivity. The core has high power density of 156 W/cm3 and its equivalent diameter is only 2.7 m for 1000 MWe class reactor core. High average core outlet temperature of 500 °C is achieved by introducing radial fuel enrichment zoning and downward flow in seed assembly. Small pressure vessel size and simplified direct steam cycle with higher thermal efficiency give an economical potential in aspect of capital and operating cost.  相似文献   

7.
Nuclear power plants exhibit non-linear and time-variable dynamics. Therefore, designing a control system that sets the reactor power and forces it to follow the desired load is complicated. A supercritical water reactor(SCWR) is a fourthgeneration conceptual reactor. In an SCWR, the non-linear dynamics of the reactor require a controller capable of controlling the nonlinearities. In this study, a pressure-tube-type SCWR was controlled during reactor power maneuvering with a higher order sliding...  相似文献   

8.
The supercritical-pressure water-cooled fast reactor (SWFR) is a fast spectrum supercritical water-cooled reactor (SCWR) studied by the University of Tokyo. The SWFR is designed as a two-pass core with an outlet temperature 500 °C. The SWFR has fuel channels cooled by downward flow, higher power density, and smaller coolant density reactivity feedback compared with Super LWR. This paper describes the safety analyses of abnormal events for the SWFR. SPRAT-F code is used for the safety analysis at supercritical pressure considering the downward flow cooled seed fuel channel. This code is based on a 1-D node junction model with point kinetics and decay heat calculations. Flow redistribution among parallel paths is calculated by pressure-loss balance and momentum conservation. The initiating events are selected from those of LWRs. For the safety analysis, nine abnormal transients and four accidents are selected with considering types of abnormality. By the numerical analyses, it was found that the loss of flow events can be mitigated by the “water source” effect of the downward flow blanket channels in the abnormal transients and accidents. All the abnormal events satisfy the criteria with margin.  相似文献   

9.
提出了一种新型的超临界水堆概念设计:混合能谱超临界水堆,它包括慢谱区和快谱区两部分.其慢谱区燃料组件采用双排燃料组件,快谱区采用简单的正方形栅元燃料组件.慢谱区与快谱区的燃料组件都采用同向流动方式来简化堆芯设计.慢谱区的冷却剂出口温度远低于整个堆芯的出口温度,这大大降低了慢谱区包壳的温度峰值.此外,由于快谱区冷却剂密度很小,流速很高,故可采用较大的栅元结构,这有效地降低了包壳周向局部传热不均匀性.所以混合堆在充分继承慢谱、快谱堆芯优点的基础上,弥补两者的不足.  相似文献   

10.
Thermohydraulic calculations of isolated and communicating cells of a rod bundle were performed by the channel method for CANDU-X fuel assemblies and by a three-dimensional method. It was established that in solving the problem for the tightest cell in the case q = const the azimuthal nonuniformity of the temperature was found to decrease by 77°C but it too was inadmissibly large. The temperature distribution along the surface of a fuel element in the case q = const was found to be different from the solution of the adjoint problem. A region with elevated coolant temperature, impeding heat exchange between two neighboring cells, was found between two adjoining cells. It was found that to evaluate computational reliability an experimental study must be performed on rod assemblies with supercritical coolant parameters.  相似文献   

11.
Supercritical water-cooled reactor (SCWR) is the only water-cooled reactor among six Generation IV reactor concepts. Safety analysis is one of the most important tasks for SCWR design. A typical thermal spectrum SCWR with passive safety system during design-basis accident (DBA) and beyond design-basis accident (BDBA) is performed. For DBA, reactor system is modeled based on a revised code ATHLET-SC. Loss of coolant accident is chosen to perform safety analysis and sensitive analysis. The results achieved demonstrate the feasibility of proposed passive cooling system to provide sufficient cooling. However, it should be noted that if one of safety systems fails to actuate during loss of coolant accident, although the likelihood is fairly low, there is potential risk of cladding failure. Consequently, the DBA will develop into the BDBA. For BDBA, a postulated severe accident is analyzed after melt pool is formed in the lower plenum. Heat transfer behavior in the melt pool as well as two-dimensional heat transfer effect in the lower head wall is discussed. Then, key parameters are chosen to perform parametric analysis. Results show that the safety margin to critical heat flux is significant. After considering two-dimensional heat conduction effect in the lower head, the safety margin could be further increased.  相似文献   

12.
A Water-cooled Pressure Tube Energy production blanket (WPTE) for fusion driven subcritical reactor has been designed to achieve 3000 MW thermal power with self-sustaining tritium cycle. Pressurized water has great advantages in energy production; however the high pressure may cause some severe structural design issues. This paper proposes a new concept of water-cooled blanket. To solve the problem of the high pressure of the coolant, the pressure tube was adopted in the design and in the meantime, the thickness of the first wall can be significantly reduced as result of adopting pressure tube. The numerically simulating and calculating of temperature, stress distribution and flow analyses were carried out and the feasibility of using water as coolant was discussed. The results demonstrated the engineering feasibility of the water-cooled fusion–fission hybrid reactor blanket module.  相似文献   

13.
A fusion-fission hybrid reactor (FFHR) with pressure tube blanket has recently been proposed based on an ITER-type tokamak fusion neutron source and the well-developed pressurized water cooling technologies. In this paper, detailed burnup calculations are carried out on an updated blanket. Two different blankets respectively fueled with the spent nuclear fuel (SNF) discharged from light water reactors (LWRs) or natural uranium oxide is investigated. In the first case, a three-batch out-to-in refueling strategy is designed. In the second case, some SNF assemblies are loaded into the blanket to help achieve tritium self-sufficiency. And a three-batch in-to-out refueling strategies is adopted to realize direct use of natural uranium oxide fuel in the blanket. The results show that only about 80 tonnes of SNF or natural uranium are needed every 1500 EFPD (Equivalent Full Power Day) with a 3000 MWth output and tritium self-sufficiency (TBR > 1.15), while the required maximum fusion powers are lower than 500 MW for both the two cases. Based on the proposed refueling strategies, the uranium utilization rate can reach about 4.0%.  相似文献   

14.
Conclusions The results of the comparison of the procedure of [2] to the experimental data on the crisis of heat transfer in bundles rod fuel elements from the domestic and foreign databases show the following: The formula of the Russian Scientific Center "Kurchatovskii institut" has much better statistical characteristics than Groeneveld's method in generalizing arrays of points on which the basis of the experimental generalization of the thermotechnical safety of domestic VVéR reactors is based. The use of a shell table for a tube (AECL-86 variant) at low pressure (2–5 MPa) results in overestimation ofq calc/q exp by up to a hundred of percent. At pressures above 12 MPa, however, the calculation is on the average 1.5 times lower than the experimental value. For simulators modeling the conditions for the appearance of a heat-transfer crisis in PWR and BWR cores, the method of [2] describes well an array of 11,000 points in the Columbia University database. In the case of a triangular arrangement of rods, however, there is a large discrepancy (by up to 40%) between the calculation and experiment. The additional correction [3] of the constantK 2 for bundles did not compensate the systematic underestimation by the calculation (by 37%) for a triangular arrangement of the simulators in the presence of axial nonuniformity of energy release. Experience in operating domestic power reactors over a period of many years shows that the modern database and accurate empirical correlation make it possible to perform a reliable calculation of the admissible thermal power of rod bundles in a wide range of geometric and operating parameters, spacing methods, and energy-release fields without using the additional procedure of making the transition from a pipe to a bundle. Institute of Nuclear Reactors, Russian Scientific Center "Kurchatovskii Institut." Translated from Atomnaya énergiya, Vol. 77, No. 2, pp. 108–111, August, 1994.  相似文献   

15.
Thermo-mechanical behaviors of supercritical pressure light water cooled fast reactor (SWFR) fuel rod and cladding have been investigated by FEMAXI-6 (Ver.1) code with high enriched MOX fuel at elevated operating condition of high coolant system pressure (25 MPa) and high temperature (500 °C in core average outlet temperature). Fuel rod failure modes and associated fuel rod design criteria that is expected to be limiting in SWFR operating condition have been investigated in this fuel rod design study. Fuel centerline temperature is evaluated to be 1853 °C and fission gas release fraction is about 45% including helium production. Cumulative damage fraction is evaluated by linear life fraction rule with time-to-rupture correlation of advanced austenitic stainless steel. In a viewpoint of mechanical strength of fuel cladding against creep rupture and cladding collapse at high operation temperature, currently available stainless steels or being developed has a potential for application to SWFR. Admissible design range in terms of initial gas plenum pressure and its volume ratio are suggested for fuel rod design The stress ranges suggested by this study could be used as a preliminary target value of cladding material development for SWFR application.  相似文献   

16.
计算流体力学(CFD)数值方法已成为超临界水冷堆热工水力特性分析的重要工具。目前,超临界条件下的CFD数值方法一般直接采用亚临界单相湍流模型,其局限性在于现有的湍流模型难以准确模拟重力和热膨胀加速度效应,在热流密度特别大的情况下,CFD数值方法适用性较差。本文综合介绍了中核核反应堆热工水力重点实验室(RETH)所开展的超临界水冷堆热工水力特性CFD分析。  相似文献   

17.
This paper describes study on the procedure of raising the reactor thermal power and the reactor coolant flow rate during the power-raising phase of plant startup for the supercritical water-cooled fast reactor (SWFR), which is selected as one of the Generation IV reactor concepts. Since part of the seed fuel assemblies and all the blanket fuel assemblies of the SWFR are cooled by downward flow, the feedwater from the reactor vessel inlet nozzle to the mixing plenum located below the core is distributed among these fuel assemblies and the downcomer. The flow rate distribution as the function of both the reactor thermal power and the feedwater flow rate, which are the design parameters for the power-raising phase, is obtained by the thermal hydraulic calculations. Based on the flow rate distribution, thermal analyses and thermal-hydraulic stability analyses are carried out in order to obtain the available region of the reactor thermal power and the feedwater flow rate for the power-raising phase. The criteria for the “available” region are the maximum cladding surface temperature (MCST) and the decay ratio of thermal-hydraulic stability in three “hot” channels; two seed assemblies with upward/downward flow and a blanket assembly. The effects of various heat transfer correlations and axial power distributions are also studied.  相似文献   

18.
CFD analysis of thermal-hydraulic behavior in SCWR typical flow channels   总被引:1,自引:0,他引:1  
Investigations on thermal-hydraulic behavior in SCWR fuel assembly have obtained a significant attention in the international SCWR community. However, there is still a lack of understanding and ability to predict the heat transfer behavior of supercritical water. In this paper, CFD analysis is carried out to study the flow and heat transfer behavior of supercritical water in sub-channels of both square and triangular rod bundles. Effect of various parameters, e.g. thermal boundary conditions and pitch-to-diameter ratio on the thermal-hydraulic behavior is investigated. Two boundary conditions, i.e., constant heat flux at the outer surface of cladding and constant heat density in the fuel pin are applied. The results show that the structure of the secondary flow mainly depends on the rod bundle configuration as well as the pitch-to-diameter ratio, whereas, the amplitude of the secondary flow is affected by the thermal boundary conditions, as well. The secondary flow is much stronger in a square lattice than that in a triangular lattice. The turbulence behavior is similar in both square and triangular lattices. The dependence of the amplitude of the turbulent velocity fluctuation across the gap on Reynolds number becomes prominent in both lattices as the pitch-to-diameter ratio increases. The effect of thermal boundary conditions on turbulent velocity fluctuation is negligibly small. For both lattices with small pitch-to-diameter ratios (P/D < 1.3), the mixing coefficient is about 0.022. Both secondary flow and turbulent mixing show unusual behavior in the vicinity of the pseudo-critical point. Further investigation is needed. A strong circumferential non-uniformity of wall temperature and heat transfer is observed in tight lattices at constant heat flux boundary conditions, especially in square lattices. In the case with constant heat density of fuel pin, the circumferential conductive heat transfer significantly reduces the non-uniformity of circumferential distribution of wall temperature and heat transfer, which is favorable for the design of SCWR fuel assemblies.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号