首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
吸附树脂对蛹虫草黄酮纯化工艺条件优化   总被引:2,自引:0,他引:2  
以蛹虫草黄酮粗提物为研究对象,分析黄酮纯化过程中树脂种类、上样体积、淋洗液pH值、洗脱液体积分数与体积及树脂重复使用次数多种影响因素,优化吸附树脂对黄酮的分离纯化工艺。通过对AB-8、D-101、NKA-9和NKA-Ⅱ 4 种吸附树脂对蛹虫草黄酮的静态吸附、静态解吸和静态吸附动力学等特性的研究,发现AB-8吸附树脂对蛹虫草黄酮有较高的吸附速率和单位吸附量,且易于解吸,是蛹虫草黄酮分离的理想树脂。通过优化实验,确定AB-8吸附树脂对蛹虫草黄酮分离纯化的最优工艺条件为树脂装柱体积100 mL时,上样体积40.0 mL、黄酮上样量47.536 mg、淋洗和洗脱速率2 BV/h、淋洗液pH 5、洗脱液乙醇体积分数和洗脱体积分别为85%和500 mL,树脂重复使用次数为2 次,在此条件下,蛹虫草黄酮的回收率在65%以上,纯度在17%以上,具有良好的分离纯化效果。  相似文献   

2.
采用大孔树脂富集纯化北冬虫夏草发酵液中的虫草素,通过比较发现6种大孔树脂中NKA-Ⅱ型大孔树脂对虫草素的吸附与解吸效果最好。静态和动态参数优化结果表明,NKA-Ⅱ型树脂纯化虫草素的最佳吸附平衡时间为6 h,解吸平衡时间为3 h。优化后的动态参数为:以1 BV/h流速上样吸附,体积分数10%乙醇除杂,70%乙醇以4 BV/h的流量洗脱。该工艺所得样品虫草素质量分数达35%,纯度提高了10倍,虫草素回收率达90%以上,经反复结晶后得到纯度大于98%的虫草素。  相似文献   

3.
研究陕产重楼中总皂苷利用大孔吸附树脂纯化的最优工艺。应用7种大孔吸附树脂吸附重楼中的总皂苷进行静态实验,筛选得到最佳树脂;通过动态实验确定最佳树脂对重楼总皂苷的纯化的最优工艺参数。结果表明,HPD-400A树脂纯化重楼总皂苷的效果最优,最优工艺条件为上样液质量浓度5mg/mL,上样量8BV,流速3BV/h,解吸流速2BV/h,解吸剂体积分数75%的乙醇,洗脱剂用量4BV,按此工艺条件制备的重楼总皂苷的含量为62.68%;Freundlich等温吸附模型可更好的描述树脂对重楼总皂苷的吸附,采用HPD-400A树脂分离纯化陕产重楼中的总皂苷效果较好。  相似文献   

4.
以三角梅苞叶为原料,研究HPD-300,AB-8,HPD-100A,HPD-700,HPD-100和D101六种大孔树脂对红色素的纯化作用,筛选D101大孔树脂作为吸附剂对色素进行静态和动态吸附试验,并运用SPSS 19.0对结果进行数据分析。结果表明,最佳静态吸附解吸工艺参数为质量浓度0.033 mg/m L,料液p H 2.0,时间3.0 h,洗脱剂50%乙醇;解吸剂p H 6.0,解吸时间2.5 h;最佳动态吸附解吸工艺参数为溶液p H 4;吸附流速4 m L/min,上样质量浓度0.024 mg/m L,最佳洗脱液位体积分数60%的乙醇;洗脱流速2 m L/min;解吸液为5.0 BV。  相似文献   

5.
蛹虫草菌皮中虫草素的提取纯化工艺研究   总被引:1,自引:0,他引:1  
目的:优化从蛹虫草菌皮中提取、纯化虫草素方法并鉴定其纯度。方法:以虫草素提取量为指标,优化虫草素提取工艺;以虫草素的吸附与解吸特性为指标,筛选不同树脂;采用结晶法成功的获得虫草素晶体并对其纯度进行鉴定。结果:用15倍药材重量的体积分数为70%的乙醇提取3次,每次1h为最佳提取条件;D001大孔强酸离子交换树脂吸附量、吸附率最高,直接洗脱后纯度可以达到80%左右,适合虫草素的纯化;重复结晶得到虫草素晶体纯度达98%以上。结论:该方法简单,分离的虫草素纯度高,是一种可行的虫草素提取方法,有利于蛹虫草综合开发利用和虫草素大规模的工厂生产。   相似文献   

6.
采用大孔吸附树脂纯化樟树叶醇提液中木脂素类化合物。通过对比6种大孔树脂对樟树叶中木脂素吸附-解吸效果,从中筛选一种最适大孔吸附树脂作为纯化材料,并研究上样浓度、上样流速、上样体积对大孔树脂吸附率的影响,以及洗脱剂浓度、洗脱流速、洗脱剂用量对大孔树脂解吸率的影响,通过正交试验优化大孔树脂纯化木脂素的工艺。试验结果表明,大孔树脂最佳吸附-解吸工艺条件为:7BV上样量、2.12mg/mL上样浓度、1.0 mL/min上样速率、80%乙醇洗脱剂、洗脱流速2BV/h,洗脱剂用量8BV,该条件下樟树叶中木脂素得率为66.68%,纯度为15.91%,表明该大孔树脂对于樟树叶中木脂素纯化效果较好。  相似文献   

7.
大孔吸附树脂纯化八角枫根中水杨苷工艺   总被引:1,自引:0,他引:1  
研究大孔树脂纯化八角枫根中水杨苷的最佳工艺条件。以水杨苷的吸附率和解吸附率为评价指标,筛选树脂种类,并优化吸附和洗脱条件。8种大孔吸附树脂中,HPD-826型大孔树脂对水杨苷具有较好的吸附分离性能,最佳的纯化工艺条件为上样液质量浓度45.12μg/mL、最大上样量6.5BV、径高比1:8、洗脱流速3BV/h,先用4BV的水洗柱除去水溶性杂质,再用5BV体积分数30%乙醇溶液洗脱。经HPD-826型大孔树脂处理后的水杨苷回收率可达78%左右,HPD-826大孔树脂对水杨苷纯化的综合性能较好,工艺稳定、可行,适合于工业化生产。  相似文献   

8.
以总黄酮吸附量为考察指标,采用分光光度法进行测定,先从D101、AB-8、HPD-400、D001、X-5五种不同类型大孔树脂中筛选出静态分离纯化文冠果落果总黄酮的最佳树脂,再对该树脂进行动态吸附工艺参数研究,以确定其对文冠果落果总黄酮的最优纯化方案。结果表明,HPD-400型大孔树脂对文冠果落果总黄酮分离纯化效果最好,优选工艺条件:上样液浓度0.53 mg/m L,上样液p H3.0,上样体积为1.5 BV,上样流速为3 BV/h;洗脱流速为2 BV/h,去离子水除杂体积2 BV,40%乙醇洗脱液3 BV,产物中总黄酮纯度45.79%。上述采用HPD-400型树脂分离纯化文冠果落果总黄酮效果最好,且具有工艺稳定性。   相似文献   

9.
目的:研究大孔树脂提取藏红花细胞培养液中藏红花素和藏红花苦素的工艺。方法:对4种大孔树脂提取藏红花素和藏红花苦素的效果进行比较,考察HPD-100A大孔树脂提取藏红花素和藏红花苦素的最佳工艺条件。结果:HPD-100A树脂提取藏红花素和藏红花苦素效果最佳,其最适工艺条件为25℃、色素液pH6、藏红花素和藏红花苦素上样质量浓度分别为1.0mg/mL和24.6mg/mL、溶液处理量1.5BV、吸附流速1.5mL/min、洗脱剂为体积分数40%乙醇溶液、洗脱剂体积1.7BV、洗脱流速1.0mL/min。藏红花素和藏红花苦素的吸附率分别达到94.4%和75.5%,解吸率分别为99.9%和87.5%。结论:采用大孔吸附树脂吸附分离藏红花培养液中藏红花素和藏红花苦素方法可行,前景广阔。  相似文献   

10.
以总黄酮吸附量为考察指标,采用分光光度法进行测定,先从D101、AB-8、HPD-400、D001、X-5五种不同类型大孔树脂中筛选出静态分离纯化文冠果落果总黄酮的最佳树脂,再对该树脂进行动态吸附工艺参数研究,以确定其对文冠果落果总黄酮的最优纯化方案。结果表明,HPD-400型大孔树脂对文冠果落果总黄酮分离纯化效果最好,优选工艺条件:上样液浓度0.53 mg/m L,上样液p H3.0,上样体积为1.5 BV,上样流速为3 BV/h;洗脱流速为2 BV/h,去离子水除杂体积2 BV,40%乙醇洗脱液3 BV,产物中总黄酮纯度45.79%。上述采用HPD-400型树脂分离纯化文冠果落果总黄酮效果最好,且具有工艺稳定性。  相似文献   

11.
为研究大孔树脂对大黄5种蒽醌的分离效果,本文采用静态吸附实验,比较6种大孔树脂(HPD-100、XDA-6、AB-8、LX-38、ADS-7和ADS-17)对5种游离蒽醌(芦荟大黄素、大黄酸、大黄素、大黄酚、大黄素甲醚)的吸附及解吸附性能,筛选出对大黄5种蒽醌吸附率和吸附率最高的大孔树脂。然后以筛选的大孔树脂作为载体,对其动态吸附特性进行了初步研究。结果显示,HPD-100大孔树脂对大黄5种蒽醌吸附率和吸附率最高;在层析柱径高比1:8,上样溶液5种蒽醌总浓度为3.64 mg/mL,上样体积2.0 BV,流速1.0 BV/h,85%的乙醇洗脱,洗脱体积为3.0 BV的优化条件下,HPD-100对5种蒽醌的动态吸附率为86.3%,洗脱率为85.9%,5种蒽醌总含量增加了2.88倍,由原来的7.13%增加到20.5%,总回收率98.7%,提取物中残留的离子液体[bmim]Br也同时被除去,表明本实验选择的优化条件具有可行性。  相似文献   

12.
目的:为探索适宜分离和纯化桑白皮多糖的大孔树脂,研究其最佳纯化工艺参数。方法:通过静态吸附-洗脱试验对十种不同型号大孔树脂(H103、HP20、AB-8、X-5、D-101、DM301、DA-201、NKA-9、HPD-722、HPD300)的吸附量、吸附率及解吸率进行考察,优选最佳纯化树脂,并研究了上样液pH、上样质量浓度、上样速度、洗脱剂体积分数、洗脱剂用量及洗脱流速对其纯化工艺的影响,确定最佳纯化工艺参数。结果:D-101型为最优树脂,最佳上样条件为:pH=3.0、上样浓度为4.0 mg/mL、上样速度为2.0 BV/h;最佳洗脱条件为:75%的乙醇洗脱液、洗脱剂用量为3.5 BV、流速为1.0 BV/h。经过该工艺纯化后,桑白皮中多糖的纯度由16.12%±1.20%提高到了74.45%±1.15%。结论:D-101型大孔树脂能够很好的富集、纯化桑白皮中的多糖,为更高效的利用桑白皮资源提供了理论依据。  相似文献   

13.
目的:建立并优化辣椒叶多酚的纯化工艺。方法:利用静态吸附与解吸附实验筛选出最适宜纯化辣椒叶多酚的大孔树脂,并利用单因素方法考察最优柱色谱条件。结果:HPD-100型大孔树脂具有较高的吸附率和解吸率,并确定其最优色谱条件为:树脂柱径高比1:4,样品多酚浓度在0.6~1.2mg/mL之间,吸附速率2BV/h,以5BV/h的流速水洗3BV,再用3BV70%乙醇洗脱,合并洗脱液真空干燥即得。结论:该工艺对辣椒叶提取物中多酚的纯化简单高效,纯化后产物中多酚含量自4%提高到68%。   相似文献   

14.
大孔树脂纯化银杏叶黄酮的研究   总被引:1,自引:1,他引:1       下载免费PDF全文
以脱脂银杏叶粉为原料,采用70%乙醇浸提法提取银杏叶黄酮,研究大孔树脂纯化银杏叶黄酮的工艺条件。以吸附率和解吸率为指标,考察了AB-8、D101、HPD-100 3种大孔树脂对银杏叶黄酮的吸附解吸性能,筛选出适合银杏叶黄酮分离纯化的树脂为AB-8型大孔树脂。结合静态与动态吸附解吸试验,得出AB-8大孔树脂分离纯化银杏叶黄酮的最佳工艺:将银杏叶黄酮提取原液稀释1.5倍(浓度为0.94 mg/mL)、调pH至4.85作为上样液,以1.5 BV/h的流速上样吸附,上样量200 mL,之后采用pH 4.95的80%乙醇作为洗脱剂,以2~2.5 BV/h的流速进行洗脱,洗脱剂用量约50 mL。在此纯化条件下所得银杏叶黄酮含量为26.16%,较纯化前提高了3.2倍。该纯化工艺条件科学合理,可有效用于银杏叶黄酮的分离富集,提高银杏叶提取物中的黄酮含量。  相似文献   

15.
《食品工业科技》2013,(05):247-250
比较了Amberlite XAD-7HP、AB-8、HPD-600、DM11、HPD-200A、Diaion HP-20、聚酰胺7种吸附剂对TFPMNs的吸附及脱附性能。在静态吸附实验的基础上,筛选出性能较好的Amberlite XAD-7HP树脂进行动态实验研究。结果表明,该树脂在室温下对TFPMN动态吸附——脱附最佳工艺参数为:上柱液总黄酮浓度10.8mg/mL,上柱液pH3,上柱流速2BV/h,样品液处理量4BV/次;脱附剂为80%乙醇,脱附流速1BV/h,用量2BV。用上述优化后的条件对TFPMNs进行纯化,干燥后的粉末中总黄酮纯度可达65.9%,总黄酮的收率可达80.2%。   相似文献   

16.
研究大孔树脂纯化核桃饼粕多酚的工艺,比较AB-8、HPD-100、D101、X-5、NKA-9五种大孔树脂对核桃饼粕多酚的分离纯化效果。结果表明,HPD-100为分离纯化核桃饼粕多酚的最佳大孔树脂,其最佳纯化工艺为上样液pH值为4.0,质量浓度4.0 mg/mL,流速2 BV/h,体积1.8 BV,以体积分数为75%乙醇洗脱,洗脱流速4 BV/h,洗脱体积3 BV。用该工艺纯化后,核桃饼粕多酚的纯度从26.63%提高到81.10%,回收率为87.33%。纯化后的核桃饼粕多酚对1,1-二苯基-2-三硝基苯肼(DPPH)自由基、羟基自由基(·OH)、过氧化氢(H2O2)和超氧阴离子自由基(O-2·)清除作用均呈现量效关系,半数抑制浓度IC50分别为481.18 μg/mL、151.43 μg/mL、8.19 μg/mL和202.83 μg/mL,对DPPH和·OH清除能力较VC强,具有深入研究的价值。  相似文献   

17.
采用AB-8型大孔树脂对从鼠曲草中提取的总黄酮产物进行分离纯化研究。考察各种因素对树脂吸附和洗脱效果的影响。通过实验得到最佳吸附工艺条件为上样液流速2BV/h、上样液pH4.5、上样液质量浓度1.7mg/mL;最佳洗脱工艺条件为洗脱液体积分数为60%乙醇、洗脱液流速1BV/h和洗脱液用量1.8BV。分离纯化后的总黄酮产品纯度可达35.42%。  相似文献   

18.
以牡丹籽壳低聚茋类化合物粗提物为原料,采用大孔吸附树脂富集纯化牡丹籽壳中的低聚茋类化合物,并研究树脂富集前后低聚茋类化合物对牡丹籽油抗氧化活性的影响。研究结果发现,HPD-100大孔吸附树脂较适合牡丹籽壳中低聚茋类化合物纯化,树脂的最佳吸附工艺:上样量100 mL,上样质量浓度为1.23 mg/mL,上样流速为2 BV/h;最佳洗脱工艺:体积分数为60%的乙醇溶液,洗脱体积为8 BV,流速为3BV/h。在优化的最佳条件下,牡丹籽壳中低聚茋类化合物的保留率为94.11%,总茋类化合物质量分数从12.32%提高至32.89%,提高了2.67倍。牡丹籽壳低聚茋类化合物抗氧化试验表明低聚茋类化合物可以有效延缓牡丹籽油的过氧化反应,其抗氧化性明显优于维生素C。研究表明,HPD-100大孔吸附树脂可以用于牡丹籽壳中低聚茋类化合物的富集分离,牡丹籽低聚茋类化合物是一种很有潜力的天然、安全、高效的抗氧化剂。  相似文献   

19.
于博  王旭峰  李文  李博  何计国 《食品科学》2009,30(14):132-135
研究委陵菜黄酮的提取及大孔树脂纯化条件。结果表明:委陵菜黄酮的最佳提取条件为溶剂采用60% 乙醇、料液比1:40(m/V)、提取时间75min、超声温度80℃,各因素均对提取率有显著(p < 0.05)影响,此条件下,提取量可达39.329mg/g;HPD600 型树脂对委陵菜中的黄酮有较好的吸附和洗脱效果,柱体积为50ml,其纯化条件为40BV,流速2BV/h,水洗,然后用5BV、60% 乙醇洗脱。经纯化后委陵菜黄酮纯度为60.28%;最终产品中黄酮得率为2.29%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号