首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
Molecular modeling studies carried out with experimental DNA models with the sequence d[AG3(T2AG3)3] suggest that the introduction of a net positive charge onto the side chain of a series of fluorenone carboxamides can improve G‐quadruplex binding. The terminal morpholino moiety was replaced with a novel N‐methylmorpholinium cation starting from two 4‐carboxamide compounds. A different substitution on the fluorenone ring was also investigated and submitted to the same quaternarization process. All compounds were analyzed for their DNA binding properties by competition dialysis methods. In vitro antiproliferative tests were carried out against two different tumor cell lines. Docking experiments were conducted by including all four known human repeat unit G‐quadruplex DNA sequences (27 experimentally determined conformations) against the most active fluorenone derivatives. The results of theoretical, biophysical, and in vitro experiments indicate two novel derivatives as lead compounds for the development of a new generation of G‐quadruplex ligands with greater potency and selectivity.  相似文献   

3.
Herein we describe a class of unconventional nucleosides (methyloxynucleosides) that combine unconventional nucleobases such as substituted aminopyrimidines, aminopurines, or aminotriazines with unusual sugars in their structures. The allitollyl or altritollyl derivatives were pursued as ribonucleoside mimics, whereas the tetrahydrofuran analogues were pursued as their dideoxynucleoside analogues. The compounds showed poor, if any, activity against a broad range of RNA and DNA viruses, including human immunodeficiency virus (HIV). This inactivity may be due to lack of an efficient metabolic conversion into their corresponding 5′‐triphosphates and poor affinity for their target enzymes (DNA/RNA polymerases). Several compounds showed cytostatic activity against proliferating human CD4+ T‐lymphocyte CEM cells and against several other tumor cell lines, including murine leukemia L1210 and human prostate PC3, kidney CAKI‐1, and cervical carcinoma HeLa cells. A few compounds were inhibitory to Moloney murine sarcoma virus (MSV) in C3H/3T3 cell cultures, with the 2,6‐diaminotri‐O‐benzyl‐D ‐allitolyl‐ and ‐D ‐altritolyl pyrimidine analogues being the most potent among them. This series of unconventional nucleosides may represent a novel family of potential antiproliferative agents.  相似文献   

4.
The helicase from severe acute respiratory syndrome coronavirus (SARS‐CoV) possesses NTPase, duplex RNA/DNA‐unwinding and RNA‐capping activities that are essential for viral replication and proliferation. Here, we have isolated DNA aptamers against the SARS‐CoV helicase from a combinatorial DNA library. These aptamers show two distinct classes of secondary structure, G‐quadruplex and non‐G‐quadruplex, as shown by circular dichroism and gel electrophoresis. All of the aptamers that were selected stimulated ATPase activity of the SARS‐CoV helicase with low‐nanomolar apparent Km values. Intriguingly, only the non‐G‐quadruplex aptamers showed specific inhibition of helicase activities, whereas the G‐quadruplex aptamers did not inhibit helicase activities. The non‐G‐quadruplex aptamer with the strongest inhibitory potency was modified at the 3′‐end with biotin or inverted thymidine, and the modification increased its stability in serum, particularly for the inverted thymidine modification. Structural diversity in selection coupled to post‐selection stabilisation has provided new insights into the aptamers that were selected for a helicase target. These aptamers are being further developed to inhibit SARS‐CoV replication.  相似文献   

5.
We report the syntheses of five natural product maleimide and maleic anhydrides from the mushroom Antrodia camphorata. The ability of these compounds to affect proliferation in non‐tumourigenic and tumourigenic liver progenitor cell lines was monitored by the Cellscreen system, a novel and nondestructive rapid‐screening instrument. Additionally, a range of new aryl‐functionalised differentiated derivatives were prepared through a Suzuki cross‐coupling reaction to influence cell‐growth effects. Several derivatives radically slowed the proliferation of liver progenitor cells; however, of particular interest were two maleic anhydride derivatives containing aryl tethers. These analogues demonstrated selectivity for limiting the proliferation of tumourigenic progenitor cells in comparison with their non‐tumourigenic counterparts. Also highlighted is the application of the Cellscreen system in medicinal chemistry to rapidly measure the effect of compound libraries on cell proliferation.  相似文献   

6.
A series of amidopropenyl hydroxamic acid derivatives were prepared as novel inhibitors of human histone deacetylases (HDACs). Several compounds showed potency at <100 nM in the HDAC inhibition assays, sub‐micromolar IC50 values in tests against three tumor cell lines, and remarkable stability in human and mouse microsomes was observed. Three representative compounds were selected for further characterization and submitted to a selectivity profile against a series of class I and class II HDACs as well as to preliminary in vivo pharmacokinetic (PK) experiments. Despite their high microsomal stability, the compounds showed medium‐to‐high clearance rates in in vivo PK studies as well as in rat and human hepatocytes, indicating that a major metabolic pathway is catalyzed by non‐microsomal enzymes.  相似文献   

7.
We report a new family of bis‐arylidene oxindole derivatives that show highly selective estrogen receptor (ER)‐mediated anticancer activity at low‐nanomolar concentrations in ER‐positive (ER+) breast cancer cells. In terms of cell growth inhibition, IC50 values for these compounds in ER+ breast cancer cells are two to three orders of magnitude lower than in ER‐negative (ER?) breast cancer cells and non‐cancer cells. In comparison with known bis‐arylidene drugs, these compounds are at least three orders of magnitude more toxic than tamoxifen and 1.5–4‐fold more toxic than 4‐hydroxytamoxifen in ER+ MCF‐7 cancer cells. These oxindoles inhibit ER transactivation, and their anticancer activities are inhibited in ER‐depleted MCF‐7 cells. Some of these nonsteroidal molecules also exhibit essential properties of selective ER down‐regulation. From the development of two series of bis‐arylidene oxindole‐based compounds, we report a new series of anticancer agents for estrogen‐responsive breast cancer.  相似文献   

8.
With the aim of discovering new anticancer agents, we have designed and synthesized novel α-aminophosphonate derivatives containing a 2-oxoquinoline structure using a convenient one-pot three-component method. The newly synthesized compounds were evaluated for antitumor activities against the A549 (human lung adenocarcinoma cell), HeLa (human cervical carcinoma cell), MCF-7 (human breast cancer cell), and U2OS (human osteosarcoma cell) cancer cell lines in vitro, employing a standard 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. The results of pharmacological screening indicated that many compounds exhibited moderate to high levels of antitumor activities against the tested cancer cell lines and that most compounds showed more potent inhibitory activities comparable to 5-fluorouracil (5-FU) which was used as a positive control. The mechanism of representative compound 4u (diethyl((2-oxo-1,2-dihydroquinolin-3-yl)(phenyl-amino)methyl)phosphonate) indicated that the compound mainly arrested HeLa cells in S and G2 stages and was accompanied by apoptosis in HeLa cells. This action was confirmed by acridine orange/ethidium bromide staining, Hoechst 33342 staining, and flow cytometry.  相似文献   

9.
10.
Bacteria contaminate surfaces in a wide variety of environments, causing severe problems across a number of industries. In a continuation of our campaign to develop novel antibacterial quaternary ammonium compounds (QACs) as useful antiseptics, we have identified a starting material bearing four tertiary amines, enabling the rapid synthesis of several tris‐ and tetracationic QACs. Herein we report the synthesis and biological activity of a series of 24 multiQACs deemed the “superT” family, and an investigation of the role of cationic charge in antimicrobial and anti‐biofilm activity, as well as toxicity. This class represents the most potent series of QACs reported to date against methicillin‐resistant Staphylococcus aureus (MRSA), with minimum inhibitory concentrations (MICs) and minimum biofilm eradication concentrations (MBECs) as low as 0.25 and 25 μm , respectively. Based on the significant cell‐surface‐charge differences between bacterial and eukaryotic cells, in certain cases we observed excellent efficacy‐to‐toxicity profiles, exceeding a 100‐fold differential. This work further elucidates the chemical underpinnings of disinfectant efficacy versus toxicity based on cationic charge.  相似文献   

11.
Six phosphorescent (2‐phenyl)pyridine (ppy) gold(III) 2,4,6‐tris(trifluoromethyl)phenyl (FMes) complexes were synthesized and investigated for their anticancer potential. The compounds demonstrated strong antiproliferative activity, with EC50 values in the low micromolar range, along with significant accumulation in HeLa cancer cells after treatment for only 6 h (up to 119 ng gold per milligram of protein as measured by high‐resolution continuum source atomic spectroscopy). Enzyme inhibition studies showed interaction of the gold(III) complexes with thioredoxin reductase (TrxR), a key homeostasis‐regulation flavoprotein. TrxR was inhibited with IC50 values in the micromolar range. Furthermore, five of the complexes displayed selectivity toward TrxR against glutathione reductase (GR, a disulfide reductase structurally related to TrxR) by up to >49‐fold. Because no major differences in bioactivity were observed across the series, [(ppy)Au(FMes)(PPh3)OTf] (complex 4 ) was chosen for further in‐depth biological characterization. Complex 4 was also found to interact with guanosine monophosphate in 1H NMR studies under long incubation times. Interestingly, 4 induced a significant increase in intracellular levels of reactive oxygen species, which led to late apoptotic events and cytocidal effects.  相似文献   

12.
There is currently significant interest in the development of G‐quadruplex‐interactive compounds, given the relationship between the ability to stabilize these non‐canonical DNA structures and anticancer activity. In this study, a set of biophysical assays was applied to evaluate the binding of six drug‐like ligands to DNA G‐quadruplexes with different folding topologies. Interestingly, two of the investigated ligands showed selective G‐quadruplex‐stabilizing properties and biological activity. These compounds may represent useful leads for the development of more potent and selective ligands.  相似文献   

13.
Based on previous work on both perylene and coronene derivatives as G‐quadruplex binders, a novel chimeric compound was designed: N,N′‐bis[2‐(1‐piperidino)‐ethyl]‐1‐(1‐piperidinyl)‐6‐[2‐(1‐piperidino)‐ethyl]‐benzo[ghi]perylene‐3,4:9,10‐tetracarboxylic diimide (EMICORON), having one piperidinyl group bound to the perylene bay area (positions 1, 12 and 6, 7 of the aromatic core), sufficient to guarantee good selectivity, and an extended aromatic core able to increase the stacking interactions with the terminal tetrad of the G‐quadruplex. The obtained “chimera” molecule, EMICORON, rapidly triggers extensive DNA damage of telomeres, associated with the delocalization of telomeric protein protection of telomeres 1 (POT1), and efficiently limits the growth of both telomerase‐positive and ‐negative tumor cells. Notably, the biological effects of EMICORON are more potent than those of the previously described perylene derivative (PPL3C), and more interestingly, EMICORON appears to be detrimental to transformed and tumor cells, while normal fibroblasts expressing telomerase remain unaffected. These results identify a new promising G‐quadruplex ligand, structurally and biologically similar on one side to coronene and on the other side to a bay‐monosubstituted perylene, that warrants further studies.  相似文献   

14.
A group of novel anilinoquinazoline derivatives with variable aryl and heterocyclic substituents at position 6 were synthesized and tested for their EGFR‐inhibitory activity. Aryl and heterocyclic rings were attached to the quinazoline scaffold through different linkages such as imine, amide, and thiourea. Most of the aryl and heterocyclic derivatives showed potent inhibition of wild‐type EGFR with IC50 values in the low nanomolar range. Among these, thiourea derivatives 6 a , 6 b and compound 10 b also retained significant activity toward the gefitinib‐insensitive EGFRT790M/L858R mutant, displaying up to 24‐fold greater potency than gefitinib. In addition, cell growth inhibitory activity was tested against cancer cell lines with wild‐type (KB cells) and mutant EGFR (H1975 cells). Several compounds including 6 a were found to be more potent than the reference compound gefitinib toward both cell lines, as was the case for compound 10 b against H1975 cells. Therefore, compounds 6 a and 10 b in particular may serve as new leads for the development of inhibitors effective against wild‐type EGFR as well as gefitinib‐resistant mutants.  相似文献   

15.
A collection of approximately 11 000 natural-product derived and inspired compounds was screened for potential apoptosis inducers in the human tumour cell lines HepG2 (liver), HeLa (cervix) and MCF-7 (breast) by means of MTT and ATP-luminescence assays, automated cell counting, caspase 3/7 assay as well as by fluorescence activated cell sorting (FACS) analysis. A group of seven indoloquinolizidine derivatives was identified that exhibited IC(50) values for cell proliferation as low as 2 mumol L(-1), with no major necrosis of cells detectable. At the same time, an increase in the rate of apoptosis of up to 600 % relative to the reference level was observed. FACS analysis indicated that these effects are related to an arrest of cells in the G(2)M phase of the cell cycle.  相似文献   

16.
A group of four selected non‐ionic surfactants based on carbohydrates, namely octyl d ‐xyloside (C8X), nonyl d ‐xyloside (C9X), decyl d ‐xyloside (C10X) and dodecyl d ‐xyloside (C12X), have been investigated to accomplish a better understanding of their physico‐chemical properties as well as biological activities. The surface‐active properties, such as critical micelle concentration (CMC), emulsion and foam stability, the impact of the compounds on cell surface hydrophobicity and cell membrane permeability together with their toxicity on the selected bacterial strains have been determined as well. The studied group of surfactants showed high surface‐active properties allowing a decrease in the surface tension to values below 25 mN m?1 for dodecyl d ‐xyloside at the CMC. The investigated compounds did not have any toxic influence on two Pseudomonas bacterial strains at concentrations below 25 mg L?1. The studied long‐chain alkyl xylosides influenced both the cell inner membrane permeability and the cell surface hydrophobicity. Furthermore, the alkyl chain length, as well as the surfactant concentration, had a significant impact on the modifications of the cell surface properties. The tested non‐ionic surfactants exhibited strong surface‐active properties accompanied by the significant influence on growth and properties of Pseudomonas bacteria cells.  相似文献   

17.
Osmium compounds are attracting increasing attention as potential anticancer drugs. In this context, a series of bifunctional organometallic osmium(II)‐p‐cymene complexes functionalized with alkyl or perfluoroalkyl groups were prepared and screened for their antiproliferative activity. Three compounds from the series display selectivity toward cancer cells, with moderate cytotoxicity observed against human ovarian carcinoma (A2780) cells, whereas no cytotoxicity was observed on non‐cancerous human embryonic kidney (HEK‐293) cells and human endothelial (ECRF24) cells. Two of these three cancer‐cell‐selective compounds induce cell death largely via apoptosis and were also found to disrupt vascularization in the chicken embryo chorioallantoic membrane (CAM) model. Based on these promising properties, these compounds have potential clinical applications.  相似文献   

18.
Chemotherapeutic agents generally suffer from off-target cytotoxicity in noncancerous cell types, leading to undesired side effects. As a result, significant effort has been put into identifying compounds that are selective for cancerous over noncancerous cell types. Our laboratory has recently developed a series of near-infrared (NIR) fluorophores containing a phosphinate functionality at the bridging position of a xanthene scaffold, termed Nebraska Red (NR) fluorophores. Herein, we report the selective cytotoxicity of one NR derivative, NR744, against HeLa (cervical cancer) cells versus NIH-3T3 (noncancerous fibroblast) cells. Mechanistic studies based on the NIR fluorescence signal of NR744 showed distinct subcellular localization in HeLa (mitochondrial) versus NIH-3T3 (lysosomal) that resulted from the elevated mitochondrial potential in HeLa cells. This study provides a new, NIR scaffold for the further development of reagents for targeted cancer therapy.  相似文献   

19.
A novel lead compound for inhibition of the antibacterial drug target, glutamate racemase (GR), was optimized for both ligand efficiency and lipophilic efficiency. A previously developed hybrid molecular dynamics–docking and scoring scheme, FERM‐SMD, was used to predict relative potencies of potential derivatives prior to chemical synthesis. This scheme was successful in distinguishing between high‐ and low‐affinity binders with minimal experimental structural information, saving time and resources in the process. In vitro potency was increased approximately fourfold against GR from the model organism, B. subtilis. Lead derivatives show two‐ to fourfold increased antimicrobial potency over the parent scaffold. In addition, specificity toward B. subtilis over E. coli and S. aureus depends on the substituent added to the parent scaffold. Finally, insight was gained into the capacity for these compounds to reach the target enzyme in vivo using a bacterial cell wall lysis assay. The outcome of this study is a novel small‐molecule inhibitor of GR with the following characteristics: Ki=2.5 μM , LE=0.45 kcal mol?1 atom?1, LiPE=6.0, MIC50=260 μg mL?1 against B. subtilis, EC50, lysis=520 μg mL?1 against B. subtilis.  相似文献   

20.
Luminescent rare earth nanoparticles exhibit superior optical stability over commonly‐used organic dyes and higher biocompatibility over quantum dots, rendering them advantageous as bioimaging nanoprobes. However, their typical excitation inhibits their broad employment with conventional fluorescence microscopes and, thus, solutions are sought to shift their activation in the long‐wavelength (near‐UV) spectral region. Here, we synthesize YVO4:Eu3+ nanophosphors by flame aerosol technology to systematically study the effect of Bi3+ codoping on their luminescence. That way, we identify an optimal Bi‐content for sufficient near‐UV activation. These nanophosphors are highly crystalline and appeared bright red under a conventional fluorescence microscope, facilitating bioimaging with HeLa cells and in vitro dosimetry correlations in the presence and absence of serum. The nanophosphor superiority over organic‐dye‐labeled silica nanoparticles is shown during dynamic imaging for 4 h without photobleaching for the former. These YVO4:Eu3+/Bi3+ nanophosphors can provide a non‐photobleaching tool for further dynamic nanoparticle‐cell interaction studies with conventional fluorescence microscopes. © 2018 American Institute of Chemical Engineers AIChE J, 64: 2947–2957, 2018  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号