首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis and biological evaluation of the entire series of C3‐halogenated derivatives and bulkier substituents at the C8′′ position of the parent stilbene‐based RARβ‐selective agonist BMS641 4 c was undertaken. The synthesis uses an E‐selective Horner–Wadsworth–Emmons (HWE) condensation of C8‐substituted C5‐dimethyl dihydronaphthaldehyde and the benzylic phosphonates derived from the C3‐halogenated benzoates to construct the stilbene skeleton. Transactivation studies revealed the synergistic effect of small halogen atoms at C3 (F, Cl) and the moderately bulky phenyl group at C8′′ (in 4 b and 4 c ) to achieve RARβ selectivity. Our results, supported by computational studies, provide a structural rationale for the mixed agonist–antagonist activities of these arotinoids, which are potent agonists of the RARβ subtype and antagonists of the RARα paralogue. Moreover, transitions from partial agonists to inverse agonists and antagonists can be accomplished with the incorporation of the same halogen atoms into the structures of known modulators BMS701 ( 5 a ) and BMS493 ( 6 a ), which have bulkier substituents than phenyl (p‐tolyl and phenylethynyl, respectively) at C8′′. Conversely, incorporation of halogen atoms in 6 a converted the ligand from an RARβ inverse agonist ( 6 b ) to an antagonist ( 6 c ) or an agonist ( 6 d ). Amazingly, 6 a – c commonly acted as inverse agonists for RARα, while 6 d and 6 e acted as regular RARα antagonists, not affecting co‐repressor interaction. In the case of the mixed agonist/antagonist 5 a , C3‐halogenation yields inverse RARα and RARβ agonists ( 5 b – d ) with the exception of iodinated 5 e , which is a regular antagonist for both these receptors. Because RARβ gene expression is frequently deleted or epigenetically silenced in several tumor cells, the novel repertoire of receptor and function‐selective RAR agonists, mixed agonist/antagonists, regular antagonists, and inverse agonists will be useful in the elucidation of the mechanism of tumor suppression by retinoids.  相似文献   

2.
A series of arotinoids with a central benzofuran or naphthofuran ring structure were synthesized by an efficient three‐step process. Most of these 3‐substituted naphthofuran arotinoids are potent agonists of the retinoic acid receptor (RAR) subtypes, with activities in the nanomolar range.

  相似文献   


3.
The field of small‐molecule orexin antagonist research has evolved rapidly in the last 15 years from the discovery of the orexin peptides to clinical proof‐of‐concept for the treatment of insomnia. Clinical programs have focused on the development of antagonists that reversibly block the action of endogenous peptides at both the orexin 1 and orexin 2 receptors (OX1R and OX2R), termed dual orexin receptor antagonists (DORAs), affording late‐stage development candidates including Merck’s suvorexant (new drug application filed 2012). Full characterization of the pharmacology associated with antagonism of either OX1R or OX2R alone has been hampered by the dearth of suitable subtype‐selective, orally bioavailable ligands. Herein, we report the development of a selective orexin 2 antagonist (2‐SORA) series to afford a potent, orally bioavailable 2‐SORA ligand. Several challenging medicinal chemistry issues were identified and overcome during the development of these 2,5‐disubstituted nicotinamides, including reversible CYP inhibition, physiochemical properties, P‐glycoprotein efflux and bioactivation. This article highlights structural modifications the team utilized to drive compound design, as well as in vivo characterization of our 2‐SORA clinical candidate, 5′′‐chloro‐N‐[(5,6‐dimethoxypyridin‐2‐yl)methyl]‐2,2′:5′,3′′‐terpyridine‐3′‐carboxamide (MK‐1064), in mouse, rat, dog, and rhesus sleep models.  相似文献   

4.
5.
The involvement of the serotonin 5‐HT1A receptor (5‐HT1A‐R) in the antidepressant effect of allyphenyline and its analogues indicates that ligands bearing the 2‐substituted imidazoline nucleus as a structural motif interact with 5‐HT1A‐R. Therefore, we examined the 5‐HT1A‐R profile of several imidazoline molecules endowed with a common scaffold consisting of an aromatic moiety linked to the 2‐position of an imidazoline nucleus by a biatomic bridge. Our aim was to discover other ligands targeting 5‐HT1A‐R and to identify the structural features favoring 5‐HT1A‐R interaction. Structure–activity relationships, supported by modeling studies, suggested that some structural cliché such as a polar function and a methyl group in the bridge, as well as proper steric hindrance in the aromatic area of the above scaffold, favored 5‐HT1A‐R recognition and activation. We also highlighted the potent antidepressant‐like effect (mouse forced swimming test) of (S)‐(+)‐ 19 [(S)‐(+)‐naphtyline] at very low dose (0.01 mg kg?1). This effect was clearly mediated by 5‐HT1A, as it was significantly reduced by pretreatment with the 5‐HT1A antagonist WAY100635.  相似文献   

6.
The 5‐HT7 receptor (5‐HT7R) is a promising therapeutic target for the treatment of depression and neuropathic pain. The 5‐HT7R antagonist SB‐269970 exhibited antidepressant‐like activity, whereas systemic administration of the 5‐HT7R agonist AS‐19 significantly inhibited mechanical hypersensitivity and thermal hyperalgesia. In our efforts to discover selective 5‐HT7R antagonists or agonists, aryl biphenyl‐3‐ylmethylpiperazines were designed, synthesized, and biologically evaluated against the 5‐HT7R. Among the synthesized compounds, 1‐([2′‐methoxy‐(1,1′‐biphenyl)‐3‐yl]methyl)‐4‐(2‐methoxyphenyl)piperazine ( 28 ) was the best binder to the 5‐HT7R (pKi=7.83), and its antagonistic property was confirmed by functional assays. The selectivity profile of compound 28 was also recorded for the 5‐HT7R over other serotonin receptor subtypes, such as 5‐HT1R, 5‐HT2R, 5‐HT3R, and 5‐HT6R. In a molecular modeling study, the 2‐methoxyphenyl moiety attached to the piperazine ring of compound 28 was proposed to be essential for the antagonistic function.  相似文献   

7.
The nuclear retinoic acid receptor‐related orphan receptor γ (RORγ; NR1F3) is a key regulator of inflammatory gene programs involved in T helper 17 (TH17) cell proliferation. As such, synthetic small‐molecule repressors (inverse agonists) targeting RORγ have been extensively studied for their potential as therapeutic agents for various autoimmune diseases. Alternatively, enhancing TH17 cell proliferation through activation (agonism) of RORγ may boost an immune response, thereby offering a potentially new approach in cancer immunotherapy. Herein we describe the development of N‐arylsulfonyl indolines as RORγ agonists. Structure–activity studies reveal a critical linker region in these molecules as the major determinant for agonism. Hydrogen/deuterium exchange coupled to mass spectrometry (HDX‐MS) analysis of RORγ–ligand complexes help rationalize the observed results.  相似文献   

8.
Inhibition of adenosine A2A receptors has been shown to elicit a therapeutic response in preclinical animal models of Parkinson’s disease (PD). We previously identified the triazolo‐9H‐purine, ST1535, as a potent A2AR antagonist. Studies revealed that ST1535 is extensively hydroxylated at the ω‐1 position of the butyl side chain. Here, we describe the synthesis and evaluation of derivatives in which the ω‐1 position has been substituted (F, Me, OH) in order to block metabolism. The stability of the compounds was evaluated in human liver microsomes (HLM), and the affinity for A2AR was determined. Two compounds, (2‐(3,3‐dimethylbutyl)‐9‐methyl‐8‐(2H‐1,2,3‐triazol‐2‐yl)‐9H‐purin‐6‐amine ( 3 b ) and 4‐(6‐amino‐9‐methyl‐8‐(2H‐1,2,3‐triazol‐2‐yl)‐9H‐purin‐2‐yl)‐2‐methylbutan‐2‐ol ( 3 c ), exhibited good affinity against A2AR (Ki=0.4 nM and 2 nM , respectively) and high in vitro metabolic stability (89.5 % and 95.3 % recovery, respectively, after incubation with HLM for two hours).  相似文献   

9.
A series of bioisosteric N1‐ and N2‐substituted 5‐(piperidin‐4‐yl)‐3‐hydroxypyrazole analogues of the partial GABAAR agonists 4‐PIOL and 4‐PHP have been designed, synthesized, and characterized pharmacologically. The unsubstituted 3‐hydroxypyrazole analogue of 4‐PIOL ( 2 a ; IC50~300 μM ) is a weak antagonist at the α1β2γ2 GABAAR, whereas substituting the N1‐ or N2‐position with alkyl or aryl substituents resulted in antagonists with binding affinities in the high nanomolar to low micromolar range at native rat GABAARs. Docking studies using a α1β2γ2 GABAAR homology model along with the obtained SAR indicate that the N1‐substituted analogues of 4‐PIOL and 4‐PHP, 2 a – k , and previously reported 3‐substituted 4‐PHP analogues share a common binding mode to the orthosteric binding site in the receptor. Interestingly, the core scaffold of the N2‐substituted analogues of 4‐PIOL and 4‐PHP, 3 b – k , are suggested to flip 180° thereby adapting to the binding pocket and addressing a cavity situated above the core scaffold.  相似文献   

10.
In accordance with a novel strategy for generating the 2‐benzazepine scaffold by connecting C6–C1 and C3–N building blocks, a set of 5‐phenylsulfanyl‐ and 5‐benzyl‐substituted tetrahydro‐2‐benzazepines was synthesized and pharmacologically evaluated. Key steps of the synthesis were the Heck reaction, the Stetter reaction, a reductive cyclization, and the introduction of diverse N substituents at the end of the synthesis. High σ1 affinity was achieved for 2‐benzazepines with linear or branched alk(en)yl residues containing at least an n‐butyl substructure. The butyl‐ and 4‐fluorobenzyl‐substituted derivatives, (±)‐5‐benzyl‐2‐butyl‐2,3,4,5‐tetrahydro‐1H‐2‐benzazepine ( 19 b ) and (±)‐5‐benzyl‐2‐(4‐fluorobenzyl)‐2,3,4,5‐tetrahydro‐1H‐2‐benzazepine ( 19 m ), show high selectivity over more than 50 other relevant targets, including the σ2 subtype and various binding sites of the N‐methyl‐D ‐aspartate (NMDA) receptor. In the Irwin screen, 19 b and 19 m showed clean profiles without inducing considerable side effects. Compounds 19 b and 19 m did not reveal significant analgesic and cognition‐enhancing activity. Compound 19 m did not have any antidepressant‐like effects in mice.  相似文献   

11.
Of the five G‐protein‐coupled muscarinic acetylcholine receptors (mAChRs; M1–M5), M5 is the least explored and understood due to a lack of mAChR subtype‐selective ligands. We recently performed a high‐throughput functional screen and identified a number of weak antagonist hits that are selective for the M5 receptor. Here, we report an iterative parallel synthesis and detailed molecular pharmacologic profiling effort that led to the discovery of the first highly selective, central nervous system (CNS)‐penetrant M5‐orthosteric antagonist, with sub‐micromolar potency (hM5 IC50=450 nM , hM5 Ki=340 nM , M1–M4 IC50 >30 μM ), enantiospecific inhibition, and an acceptable drug metabolism and pharmacokinetics (DMPK) profile for in vitro and electrophysiology studies. This compound will be a powerful tool and molecular probe for the further investigation into the role of M5 in addiction and other diseases.  相似文献   

12.
Starting from easily accessible precursors we describe the preparation of a series of branched oligo(2‐thienyl)‐ and oligo(2,2′‐bithienyl)‐substituted pyridine derivatives. With palladium‐catalyzed cross‐coupling reactions of pyridyl nonaflates/triflates as key steps we synthesized 2,6‐di(2‐thienyl)pyridines bridged by thiophene or benzene rings. By selective bromination of 2,6‐di(2‐thienyl)pyridine and 2,4,6‐tri(2‐thienyl)pyridine and subsequent coupling reactions an access to oligo(2,2′‐bithien‐5‐yl)‐substituted pyridine derivatives was gained. The constitution and solid state conformation of 2,6‐bis(2,2’‐bithien‐5‐yl)pyridine was determined by X‐ray analysis. This series of new pyridine‐thiophene conjugates was systematically investigated by UV/vis spectroscopy. Large Stokes shifts in the neutral and protonated form were observed. The electrochemical oxidation of two typical compounds was studied, however, these oxidations were irreversible forming a polymeric film at the anode. As a selected example, a thiophene‐bridged 2,6‐di(2‐thienyl)pyridine derivative was also investigated by scanning tunneling microscopy showing an interesting self‐assembly into a highly ordered monolayer on highly oriented pyrolytic graphite.

  相似文献   


13.
Animal models suggest that the chemokine ligand 2/CC‐chemokine receptor 2 (CCL2/CCR2) axis plays an important role in the development of inflammatory diseases. However, CCR2 antagonists have failed in clinical trials because of a lack of efficacy. We previously described a new approach for the design of CCR2 antagonists by the use of structure–kinetics relationships (SKRs). Herein we report new findings on the structure–affinity relationships (SARs) and SKRs of the reference compound MK‐0483, its diastereomers, and its structural analogues as CCR2 antagonists. The SARs of the 4‐arylpiperidine group suggest that lipophilic hydrogen‐bond‐accepting substituents at the 3‐position are favorable. However, the SKRs suggest that a lipophilic group with a certain size is desired [e.g., 3‐Br: Ki=2.8 nM , residence time (tres)=243 min; 3‐iPr: Ki=3.6 nM , tres=266 min]. Alternatively, additional substituents and further optimization of the molecule, while keeping a carboxylic acid at the 3‐position, can also prolong tres; this was most prominently observed in MK‐0483 (Ki=1.2 nM , tres=724 min) and a close analogue (Ki=7.8 nM ) with a short residence time.  相似文献   

14.
15.
Herein we describe the synthesis and structure–activity relationships of 3‐aminocyclohex‐2‐en‐1‐one derivatives as novel chemokine receptor 2 (CXCR2) antagonists. Thirteen out of 44 derivatives were found to inhibit CXCR2 downstream signaling in a Tango assay specific for CXCR2, with IC50 values less than 10 μm . In silico ADMET prediction suggests that all active compounds possess drug‐like properties. None of these compounds show significant cytotoxicity, suggesting their potential application in inflammatory mediated diseases. A structure–activity relationship (SAR) map has been generated to gain better understanding of their binding mechanism to guide further optimization of these new CXCR2 antagonists.  相似文献   

16.
N‐Substituted trans‐3,4‐dimethyl‐4‐(3‐hydroxyphenyl)piperidines are a class of pure opioid receptor antagonists with a novel pharmacophore. This opioid receptor antagonist pharmacophore was used as a lead structure to design and develop several interesting and useful opioid receptor antagonists. In this review we describe: 1) early SAR studies that led to the discovery of LY255582 and analogues that are nonselective opioid receptor antagonists developed for the treatment of obesity; 2) the discovery and commercialization of LY246736 (alvimopan; ENTEREG®), a peripherally selective opioid receptor antagonist that accelerates the time to upper and lower GI recovery following surgeries that include partial bowel resection with primary anastomosis; and 3) the discovery and development of the potent and selective κ opioid receptor antagonist JDTic and analogues as potential pharmacotherapies for treating depression, anxiety, and substance abuse (nicotine, alcohol, and cocaine). In addition, the use of JDTic for obtaining the X‐ray structure of the human κ opioid receptor is discussed.  相似文献   

17.
AMOP‐H‐OH (sazetidine‐A; 6‐[5‐(azetidin‐2‐ylmethoxy)pyridin‐3‐yl]hex‐5‐yn‐1‐ol) and some sulfur‐bearing analogues were tested for their activities in vitro against human α4β2‐, α4β4‐, α3β4*‐ and α1*‐nicotinic acetylcholine receptors (nAChRs). AMOP‐H‐OH was also assessed in an antidepressant efficacy model. AMOP‐H‐OH and some of its analogues have high potency and selectivity for α4β2‐nAChRs over other nAChR subtypes. Effects are manifested as partial agonism, perhaps reflecting selectivity for high sensitivity (α4)3(β2)2‐nAChRs. More prolonged exposure to AMOP‐H‐OH and its analogues produces inhibition of subsequent responses to acute challenges with full nicotinic agonists, again selectively for α4β2‐nAChRs over other nAChR subtypes. The inhibition is mediated either via antagonism or desensitization of nAChR function, but the degree of inhibition of α4β2‐nAChRs is limited by the partial agonist activity of the drugs. Certain aspects of the in vitro pharmacology suggest that AMOP‐H‐OH and some of its analogues have a set of binding sites on α4β2‐nAChRs that are distinct from those for full agonists. The in vitro pharmacological profile suggests that peripheral side effects of AMOP‐H‐OH or its analogues would be minimal and that their behavioral effects would be dominated by central nAChR actions. AMOP‐H‐OH also has profound and high potency antidepressant‐like effects in the forced swim test. The net action of prolonged exposure to AMOP‐H‐OH or its analogues, as for nicotine, seems to be a selective decrease in α4β2‐nAChR function. Inactivation of nAChRs may be a common neurochemical endpoint for nicotine dependence, its treatment, and some of its manifestations, including relief from depression.  相似文献   

18.
19.
Efficient and practical syntheses of enantiomerically pure (R)‐(5‐amino‐2,3‐dihydro‐1H‐inden‐2‐yl)‐carbamic acid methyl ester ( 1 ) by three different routes via the resolution of different aminoindan intermediates are described.  相似文献   

20.
A selective 5‐HT 1A receptor agonist : A new series of ligands acting at 5‐HT1A serotonin receptor were identified. Among them (2,2‐diphenyl‐[1,3]oxathiolan‐5‐yl‐methyl)‐(3‐phenyl‐propyl)amine (shown) possesses outstanding activity (pKi=8.72, pD2=7.67, Emax=85) and selectivity (5‐HT1A1D>150), and represents a new 5‐HT1A agonist chemotype.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号