首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An emerging and attractive target for the treatment of Alzheimer's disease is to inhibit the aggregation of β‐amyloid protein (Aβ). We applied the retro‐enantio concept to design an N‐methylated peptidic inhibitor of the Aβ42 aggregation process. This inhibitor, inrD, as well as the corresponding all‐L (inL) and all‐D (inD) analogues were assayed for inhibition of Aβ42 aggregation. They were also screened in neuroblastoma cell cultures to assess their capacity to inhibit Aβ42 cytotoxicity and evaluated for proteolytic stability. The results reveal that inrD and inD inhibit Aβ42 aggregation more effectively than inL, that inrD decreases Aβ42 cytotoxicity to a greater extent than inL and inD, and that as expected, both inD and inrD are stable to proteases. Based on these results, we propose that the retro‐enantio approach should be considered in future designs of peptide inhibitors of protein aggregation.  相似文献   

2.
Amyloidogenic proteins share a propensity to convert to the β‐structure‐rich amyloid state that is associated with the progression of several protein‐misfolding disorders. Here we show that a single engineered β‐hairpin‐binding protein, the β‐wrapin AS10, binds monomers of three different amyloidogenic proteins, that is, amyloid‐β peptide, α‐synuclein, and islet amyloid polypeptide, with sub‐micromolar affinity. AS10 binding inhibits the aggregation and toxicity of all three proteins. The results demonstrate common conformational preferences and related binding sites in a subset of the amyloidogenic proteins. These commonalities enable the generation of multispecific monomer‐binding agents.  相似文献   

3.
The αvβ3 integrin receptor plays an important role in tumor metastasis and tumor‐induced angiogenesis. The inhibition of this receptor with diverse ligands, antibodies, or cyclic peptides is a promising research field for the treatment of a variety of tumors. The replacement of Phe‐(Me)Val dipeptide by a β‐lactam ring in Cilengitide has led to new products that show higher inhibitory activity than the parent cyclopeptide. In particular, substitution of a peptide bond β‐lactam‐NH‐Asp linkage by a β‐lactam‐O‐Asp ester linkage increases the activity of the new cyclodepsipeptide. In the same way it has been found that open‐chain compounds of the form Asp‐β‐lactam‐Arg can interact with the receptor and inhibit its activity moderately. The integrin inhibitory activity of the synthesized compounds has been established by using the CGH array, a method that appears to be a more reliable trial than the classical adhesion test.  相似文献   

4.
In order to improve the water solubility of sugar‐based surfactants, alkyl β‐d‐ xylopyranosides, novel sugar‐based surfactants, 1,2‐trans alkoxyethyl β‐d‐ xylopyranosides, with alkyl chain length n = 6–12 were stereoselectively prepared by the trichloroacetimidate method. Their properties including hydrophilic–lipophilic balance (HLB) number, water solubility, surface tension, emulsification, foamability, thermotropic liquid crystal, and hygroscopicity were investigated. The results indicated that their HLB number decreased with increase of alkyl chain, the water solubility improved since the hydrophilic oxyethene (─OCH2CH2─) fragment was introduced. The dissolution process was entropy driven at 25–45 °C for alkyl chain length n = 6–10. Octyloxyethyl β‐d‐ xylopyranoside had the best foaming ability. Nonyloxyethyl β‐d‐ xylopyranoside had the best foam stability and the emulsifying ability was better in toluene/water system than in rapeseed oil/water system. The surface tension of in aqueous solution dropped to 27.8 mN m?1 at the critical micelle concentration, and it also showed the most distinct thermotropic liquid phases with cross pattern texture upon heating and the fan schlieren texture on cooling. Hexyloxyethyl β‐d‐ xylopyranoside possessed the strongest hygroscopicity. Based on the effective improvement of water solubility, the prepared alkoxyethyl β‐d‐ xylopyranosides showed excellent surface activity and are expected to develop their practical application as a class of novel sugar‐based surfactants.  相似文献   

5.
The activation of C Cl bond of (Z)‐α‐chloroalkylidene‐β‐lactones and (E)‐α‐chloroalkylidene‐β‐lactams via the Suzuki cross‐coupling reaction is reported in this paper. Alkyl, heteroaromatic, substituted phenyl‐ and alkenylboronic acids can be coupled with a wide variety of α‐chloroalkylidene‐β‐lactones and β‐lactams in excellent yields within a short period of time. The cross‐coupling reaction of optically active substrates leads to the optically active compounds without racemization of the corresponding chiral center.  相似文献   

6.
Monoamine oxidase (MAO) is an important drug target for the treatment of neurological disorders. Several 3‐arylcoumarin derivatives were previously described as interesting selective MAO‐B inhibitors. Preserving the trans‐stilbene structure, a series of 2‐arylbenzofuran and corresponding 3‐arylcoumarin derivatives were synthesized and evaluated as inhibitors of both MAO isoforms, MAO‐A and MAO‐B. In general, both types of derivatives were found to be selective MAO‐B inhibitors, with IC50 values in the nano‐ to micromolar range. 5‐Nitro‐2‐(4‐methoxyphenyl)benzofuran ( 8 ) is the most active compound of the benzofuran series, presenting MAO‐B selectivity and reversible inhibition (IC50=140 nM ). 3‐(4′‐Methoxyphenyl)‐6‐nitrocoumarin ( 15 ), with the same substitution pattern as that of compound 8 , was found to be the most active MAO‐B inhibitor of the coumarin series (IC50=3 nM ). However, 3‐phenylcoumarin 14 showed activity in the same range (IC50=6 nM ), is reversible, and also severalfold more selective than compound 15 . Docking experiments for the most active compounds into the MAO‐B and MAO‐A binding pockets highlighted different interactions between the derivative classes (2‐arylbenzofurans and 3‐arylcoumarins), and provided new information about the enzyme–inhibitor interaction and the potential therapeutic application of these scaffolds.  相似文献   

7.
Selective activation of the estrogen receptor β (ERβ) could be a safe approach to hormone replacement therapy for both women and men, in contrast to the estrogens currently used for women which activate both ERβ and ERα, occasionally causing severe side effects. The selective ERβ agonist AC‐131 has shown efficacy in animal models of Parkinson’s disease and neuropathic pain. With the use of AC‐131 as template, herein we report the discovery, synthesis, and structure–activity relationship (SAR) study of a new class of dihydrobenzofurans as potent and selective ERβ agonists. The SAR was established by enantioselective synthesis, molecular modeling, and whole‐cell‐based functional assays. The most potent diastereomer, cis‐ 10 ‐SR, was shown to have an EC50 value of <1 nM , potency 100‐fold higher than that of AC‐131. Even more interestingly, compound trans‐ 10 ‐SS exhibited 1000‐fold ERβ/ERα selectivity while still maintaining good potency (~10 nM ). In addition, trans‐ 10 ‐SS showed only partial agonist activity (30–60 % Eff.) toward ERα at 10 μM . This unprecedented selectivity could be rationalized by molecular modeling. Compound trans‐ 10 ‐SS appears to be the first molecule to take advantage of both conservative amino acid differences found in the α‐ and β‐faces of the binding cavities of ERα and ERβ.  相似文献   

8.
Propylene‐based propylene–ethylene random copolymer (PPR) has been widely used in the production of hot‐water pipes. To further improve its toughness and thermal resistance, β‐nucleating agents (β‐NAs) are frequently incorporated. In this study, PPR containing 5.6 mol % ethylene units was modified by two kinds of β‐NAs, that is, calcium pimelate and N,N′‐dicyclohexylterephthalamide. The notched Izod impact strength of PPR increased with the addition of the β‐NAs. Drastically different toughening effects were found between the two β‐NAs. The structure of PPR with and without a β‐NA was investigated by calorimetry, X‐ray diffraction, and thermomechanical analysis. The results indicated that the relative fraction of β crystals (kβ) in the injection‐molded specimens was determined by the type and content of β‐NA. The relationship between kβ and the impact toughness was summarized. A critical value for kβ (0.68) was identified for the brittle–ductile transition of PPR. PPR with β‐NA having a kβ greater than 0.68 displayed a higher impact strength than the other mixtures. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42930.  相似文献   

9.
Inhibition of amyloid‐β (Aβ) aggregation could be a target of drug development for the treatment of currently incurable Alzheimer's disease. We previously reported that a head‐to‐tail cyclic peptide of KLVFF (cyclic‐KLVFF), a pentapeptide fragment corresponding to the Aβ16–20 region (which plays a critical role in the generating Aβ fibrils), possesses potent inhibitory activity against Aβ aggregation. Here we found that the inhibitory activity of cyclic‐KLVFF was significantly improved by incorporating an additional phenyl group at the β‐position of the Phe4 side chain (inhibitor 3 ). Biophysical and biochemical analyses revealed the rapid formation of 3 ‐embedded oligomer species when Aβ1–42 was mixed with 3 . The oligomer species is an “off‐pathway” species with low affinity for cross‐β‐sheet‐specific dye thioflavin T and oligomer‐specific A11 antibodies. The oligomer species had a sub‐nanometer height and little capability of aggregation to amyloid fibrils. Importantly, the toxicity of the oligomer species was significantly lower than that of native Aβ oligomers. These insights will be useful for further refinement of cyclic‐KLVFF‐based aggregation inhibitors.  相似文献   

10.
Serine‐ and metallo‐β‐lactamases present a threat to the clinical use of nearly all β‐lactam antibiotics, including penicillins, cephalosporins, and carbapenems. Efforts to develop metallo‐β‐lactamase (MBL) inhibitors require suitable screening platforms to allow the rapid determination of β‐lactamase activity and efficient inhibition. Unfortunately, the platforms currently available are not ideal for this purpose. Further progress in MBL inhibitor identification requires inexpensive and widely applicable assays. Herein the identification of an inexpensive and stable chromogenic substrate suitable for use in assays of clinically relevant MBLs is described. (6R,7R)‐3‐((4‐Nitrophenoxy)methyl)‐8‐oxo‐7‐(2‐phenylacetamido)‐5‐thia‐1‐azabicyclo[4.2.0]oct‐2‐ene‐2‐carboxylic acid 5,5‐dioxide (CLS405) was synthesised in a three‐step protocol. CLS405 was then characterised spectroscopically, and its stability and kinetic properties evaluated. With a Δλmax value of 100 nm between the parent and hydrolysis product, a higher analytical accuracy is possible with CLS405 than with commonly used chromogenic substrates. The use of CLS405 in assays was validated by MBL activity measurements and inhibitor screening that resulted in the identification of N‐hydroxythiazoles as new inhibitor scaffolds for MBLs. Further evaluation of the identified N‐hydroxythiazoles against a panel of clinically relevant MBLs showed that they possess inhibitory activities in the mid‐ to low‐micromolar range. The findings of this study provide both a useful tool compound for further inhibitor identification, and novel scaffolds for the design of improved MBL inhibitors with potential as antibiotics against resistant strains of bacteria.  相似文献   

11.
On the premise that shear in the slit die of an extruder was minimized as far as possible, β‐nucleated isotactic polypropylene (iPP) was extruded. Simultaneously, once the extrudate (in the melt state) left the die exit, it was stretched at various stretching rates (SRs). For iPP with a low content of β‐nucleating agent (β‐NA), the crystallinity of β‐phase (Xβ) initially increases with increasing SR, and then decreases slightly with further increase in SR. However, for iPP containing a higher content of β‐NA, with increasing SR, Xβ decreases monotonically, indicating a negative effect of SR on β‐phase formation. Small‐angle X‐ray scattering and polarized optical microscopy experiments reveal that, when SR is less than 30 cm min?1, the increasing amount of row nuclei induced by increasing SR is mainly responsible for the increase of Xβ. In contrast, when SR exceeds 30 cm min?1, the overgrowth of shish structures unexpectedly restrains the development of β‐phase, and spatial confinement is considered as a better explanation for the suppression of β‐phase. Copyright © 2011 Society of Chemical Industry  相似文献   

12.
A series of 2‐amino‐6‐nitrobenzothiazole‐derived extended hydrazones were designed, synthesized, and investigated for their ability to inhibit monoamine oxidase A and B (MAO‐A/MAO‐B). The compounds were found to exhibit inhibitory activities in the nanomolar to micromolar range. Some of the compounds showed excellent potency and selectivity against the MAO‐B isoform. N′‐(5‐Chloro‐2‐oxoindolin‐3‐ylidene)‐2‐(6‐nitrobenzothiazol‐2‐ylamino)acetohydrazide (compound 31 ) showed the highest MAO‐B inhibitory activity (IC50=1.8±0.3 nm , selectivity index [SI]=766.67), whereas compound 6 [N′‐(1‐(4‐bromophenyl)ethylidene)‐2‐(6‐nitrobenzothiazol‐2‐ylamino)acetohydrazide] was found to be the most active MAO‐A inhibitor (IC50=0.42±0.003 μm ). Kinetic studies revealed that compounds 6 and 31 exhibit competitive‐type reversible inhibition against both MAO‐A and MAO‐B, respectively. Structure–activity relationship (SAR) studies disclosed several structural aspects significant for potency and the contribution of the methylene spacer toward MAO‐B inhibitory potency, with minimal or no neurotoxicity. Molecular modeling studies yielded a good correlation between experimental and theoretical inhibitory data. Binding pose analysis revealed the significance of cumulative effects of π–π stacking and hydrogen bond interactions for effective stabilization of virtual ligand–protein complexes. Further optimization studies of compound 31 , including co‐crystallization of inhibitor–MAO‐B complexes, are essential to develop these compounds as potential therapeutic agents for MAO‐B‐associated neurodegenerative diseases.  相似文献   

13.
A library of 4,5‐disubstituted 2‐aminoimidazole triazole amide (2‐AITA) conjugates has been successfully assembled. Upon biological screening, this class of small molecules was discovered as enhanced biofilm regulators through non‐microbicidal mechanisms against methicillin‐resistant Staphylococcus aureus (MRSA) and multidrug‐resistant Acinetobacter baumannii (MDRAB), with active concentrations in the low micromolar range. The library was also subjected to synergism and resensitization studies with β‐lactam antibiotics against MRSA. Lead compounds were identified that suppress the antibiotic resistance of MRSA by working synergistically with oxacillin, a β‐lactam antibiotic resistant to penicillinase. A further structure–activity relationship (SAR) study on the parent 2‐AITA compound delivered a 2‐aminoimidazole diamide (2‐AIDA) conjugate with significantly increased synergistic activity with oxacillin against MRSA, decreasing the MIC value of the β‐lactam antibiotic by 64‐fold. Increased anti‐biofilm activity did not necessarily lead to increased suppression of antibiotic resistance, which indicates that biofilm inhibition and resensitization are most likely occurring via distinct mechanisms.  相似文献   

14.
β2‐Microglobulin (β2‐m) is a protein responsible for a severe complication of long‐term hemodialysis, known as dialysis‐related amyloidosis, in which initial β2‐m misfolding leads to amyloid fibril deposition, mainly in the skeletal tissue. Whereas much attention is paid to understanding the complex mechanism of amyloid formation, the evaluation of small molecules that may bind β2‐m and possibly inhibit the aggregation process is still largely unexplored mainly because the protein lacks a specific active site. Based on our previous findings, we selected a pilot set of sulfonated molecules that are known to either bind or not to the protein, including binders that are anti‐amyloidogenic. We show how a complementary approach, using high‐resolution mass spectrometry and in silico studies, can offer rapid and precise information on affinity, as well as insight into the structural requisites that favour or disfavour the inhibitory activity. Overall, this approach can be used for predictive purposes and for a rapid screening of fibrillogenesis inhibitors.  相似文献   

15.
The inhibition of amyloid formation is a promising therapeutic approach for the treatment of neurodegenerative diseases. Peptide‐based inhibitors, which have been widely investigated, are generally derived from original amyloid sequences. Most interestingly, trehalose, a nonreducing disaccharide of α‐glucose, is effective in preventing the aggregation of numerous proteins. We have determined that the development of hybrid compounds could provide new molecules with improved properties that might synergically increase the potency of their single moieties. In this work, the ability of Ac‐LPFFD‐Th, a C‐terminally trehalose‐conjugated derivative, to slow down the Aβ aggregation process was investigated by means of different biophysical techniques, including thioflavin T fluorescence, dynamic light scattering, ESI‐MS, and NMR spectroscopy. Moreover, we demonstrate that Ac‐LPFFD‐Th modifies the aggregation features of Aβ and protects neurons from Aβ oligomers' toxic insult.  相似文献   

16.
Truncated and mutated amyloid‐β (Aβ) peptides are models for systematic study—in homogeneous preparations—of the molecular origins of metal ion effects on Aβ aggregation rates, types of aggregate structures formed, and cytotoxicity. The 3D geometry of bis‐histidine imidazole coordination of CuII in fibrils of the nonapetide acetyl‐Aβ(13–21)H14A has been determined by powder 14N electron spin echo envelope modulation (ESEEM) spectroscopy. The method of simulation of the anisotropic combination modulation is described and benchmarked for a CuII‐bis‐cis‐imidazole complex of known structure. The revealed bis‐cis coordination mode, and the mutual orientation of the imidazole rings, for CuII in Ac‐Aβ(13–21)H14A fibrils are consistent with the proposed β‐sheet structural model and pairwise peptide interaction with CuII, with an alternating [‐metal‐vacancy‐]n pattern, along the N‐terminal edge. Metal coordination does not significantly distort the intra‐β‐strand peptide interactions, which provides a possible explanation for the acceleration of Ac‐Aβ(13–21)H14A fibrillization by CuII, through stabilization of the associated state and low‐reorganization integration of β‐strand peptide pair precursors.  相似文献   

17.
Targeting β‐amyloid (Aβ) remains the most desired strategy in Alzheimer’s disease (AD) drug discovery research. Many peptides that specifically target Aβ aggregates are known, encompassing efforts from both industrial and academic research settings. However, in clinical terms, not much success has been gained with peptide research; in turn, small drug‐like molecules are already globally recognized as showing promise as an alternate approach. Aβ aggregation inhibitors are the most important part of the multifunctional drug design regimen for treating AD. Unfortunately, rational drug design approaches with small molecules are still in the initial stages. Herein we highlight, update, and elaborate on the structural anatomy of Aβ and known Aβ aggregation inhibitors in hopes of helping to optimize their use in structure‐based drug design approaches toward inhibitors with greater specificity. Furthermore, we present the first review of efforts to target a previously uncharacterized region of acetylcholinesterase: the N‐terminal 7–20 sub‐region, which was experimentally elucidated to participate in Aβ aggregation and deposition.  相似文献   

18.
A number of aza‐heterocyclic compounds, which share the 5,6‐dihydropyrrolo[2,1‐a]isoquinoline (DHPIQ) scaffold with members of the lamellarin alkaloid family, were synthesized and evaluated for their ability to reverse in vitro multidrug resistance in cancer cells through inhibition of P‐glycoprotein (P‐gp) and/or multidrug‐resistance‐associated protein 1. Most of the investigated DHPIQ compounds proved to be selective P‐gp modulators, and the most potent modulator, 8,9‐diethoxy‐1‐(3,4‐diethoxyphenyl)‐3‐(furan‐2‐yl)‐5,6‐dihydropyrrolo[2,1‐a]isoquinoline‐2‐carbaldehyde, attained sub‐micromolar inhibitory potency (IC50: 0.19 μm ). Schiff bases prepared by the condensation of some 1‐aryl‐DHPIQ aldehydes with p‐aminophenol also proved to be of some interest, and one of them, 4‐((1‐(4‐fluorophenyl)‐5,6‐dihydro‐8,9‐dimethoxypyrrolo[2,1‐a]isoquinolin‐2‐yl)methyleneamino)phenol, had an IC50 value of 1.01 μm . In drug combination assays in multidrug‐resistant cells, some DHPIQ compounds, at nontoxic concentrations, significantly increased the cytotoxicity of doxorubicin in a concentration‐dependent manner. Studies of structure–activity relationships and investigation of the chemical stability of Schiff bases provided physicochemical information useful for molecular optimization of lamellarin‐like cytotoxic drugs active toward chemoresistant tumors as well as nontoxic reversers of P‐gp‐mediated multidrug resistance in tumor cells.  相似文献   

19.
A series of bioisosteric N1‐ and N2‐substituted 5‐(piperidin‐4‐yl)‐3‐hydroxypyrazole analogues of the partial GABAAR agonists 4‐PIOL and 4‐PHP have been designed, synthesized, and characterized pharmacologically. The unsubstituted 3‐hydroxypyrazole analogue of 4‐PIOL ( 2 a ; IC50~300 μM ) is a weak antagonist at the α1β2γ2 GABAAR, whereas substituting the N1‐ or N2‐position with alkyl or aryl substituents resulted in antagonists with binding affinities in the high nanomolar to low micromolar range at native rat GABAARs. Docking studies using a α1β2γ2 GABAAR homology model along with the obtained SAR indicate that the N1‐substituted analogues of 4‐PIOL and 4‐PHP, 2 a – k , and previously reported 3‐substituted 4‐PHP analogues share a common binding mode to the orthosteric binding site in the receptor. Interestingly, the core scaffold of the N2‐substituted analogues of 4‐PIOL and 4‐PHP, 3 b – k , are suggested to flip 180° thereby adapting to the binding pocket and addressing a cavity situated above the core scaffold.  相似文献   

20.
Antiapoptotic Bcl‐2 family proteins, such as Bcl‐xL, Bcl‐2, and Mcl‐1, are often overexpressed in tumor cells, which contributes to tumor cell resistance to chemotherapies and radiotherapies. Inhibitors of these proteins thus have potential applications in cancer treatment. We discovered, through structure‐based virtual screening, a lead compound with micromolar binding affinity to Mcl‐1 (inhibition constant (Ki)=3 μM ). It contains a phenyltetrazole and a hydrazinecarbothioamide moiety, and it represents a structural scaffold not observed among known Bcl‐2 inhibitors. This work presents the structural optimization of this lead compound. By following the scaffold‐hopping strategy, we have designed and synthesized a total of 82 compounds in three sets. All of the compounds were evaluated in a fluorescence‐polarization binding assay to measure their binding affinities to Bcl‐xL, Bcl‐2, and Mcl‐1. Some of the compounds with a 3‐phenylthiophene‐2‐sulfonamide core moiety showed sub‐micromolar binding affinities to Mcl‐1 (Ki=0.3–0.4 μM ) or Bcl‐2 (Ki≈1 μM ). They also showed obvious cytotoxicity on tumor cells (IC50<10 μM ). Two‐dimensional heteronuclear single quantum coherence NMR spectra of three selected compounds, that is, YCW‐E5, YCW‐E10, and YCW‐E11, indicated that they bind to the BH3‐binding groove on Bcl‐xL in a similar mode to ABT‐737. Several apoptotic assays conducted on HL‐60 cells demonstrated that these compounds are able to induce cell apoptosis through the mitochondrial pathway. We propose that the compounds with the 3‐phenylthiophene‐2‐sulfonamide core moiety are worth further optimization as effective apoptosis inducers with an interesting selectivity towards Mcl‐1 and Bcl‐2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号