首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibition of adenosine A2A receptors has been shown to elicit a therapeutic response in preclinical animal models of Parkinson’s disease (PD). We previously identified the triazolo‐9H‐purine, ST1535, as a potent A2AR antagonist. Studies revealed that ST1535 is extensively hydroxylated at the ω‐1 position of the butyl side chain. Here, we describe the synthesis and evaluation of derivatives in which the ω‐1 position has been substituted (F, Me, OH) in order to block metabolism. The stability of the compounds was evaluated in human liver microsomes (HLM), and the affinity for A2AR was determined. Two compounds, (2‐(3,3‐dimethylbutyl)‐9‐methyl‐8‐(2H‐1,2,3‐triazol‐2‐yl)‐9H‐purin‐6‐amine ( 3 b ) and 4‐(6‐amino‐9‐methyl‐8‐(2H‐1,2,3‐triazol‐2‐yl)‐9H‐purin‐2‐yl)‐2‐methylbutan‐2‐ol ( 3 c ), exhibited good affinity against A2AR (Ki=0.4 nM and 2 nM , respectively) and high in vitro metabolic stability (89.5 % and 95.3 % recovery, respectively, after incubation with HLM for two hours).  相似文献   

2.
Novel types of adenosine and 2′‐deoxyadenosine derivatives containing boron clusters at positions C2′, N6, or C8 were synthesized. The effect of these modified compounds on platelet function was studied. Modification of adenosine at the C2′ position with a para‐carborane cluster (C2B10H11) results in efficient inhibition of platelet function, including aggregation, protein secretion, and P‐selectin expression induced by thrombin or ADP. These preliminary findings and the new chemistry proposed form the basis for the development of a new class of adenosine analogues that modulate human blood platelet activities.  相似文献   

3.
A series of cycloSal‐phosphate prodrugs of a recently described new class of nucleoside cytostatics (6‐hetaryl‐7‐deazapurine ribonucleosides) was prepared. The corresponding 2′,3′‐isopropylidene 6‐chloro‐7‐deazapurine nucleosides were converted into 5‐O′‐cycloSal‐phosphates. These underwent a series of Stille or Suzuki cross‐couplings with diverse (het)arylstannanes or ‐boronic acids to yield the protected 6‐(het)aryl‐7‐deazapurine pronucleotides that were subsequently deprotected to give 12 derivatives of free pronucleotides. The in vitro cytostatic effect of the pronucleotides was compared with parent nucleoside analogues. In most cases, the activity of the pronucleotide was similar to or somewhat lower than that of the corresponding parent nucleosides, with the exception of 7‐fluoro pronucleotides 13 a , 13 b , and 13 d , which had exhibited GIC50 values that were improved by one order of magnitude (to the low nanomolar range). The presence of a cycloSal‐phosphate group also influenced selectivity toward various cell lines. Several pronucleotides were found which strongly inhibit human adenosine kinase but only weakly inhibit the MTB adenosine kinase.  相似文献   

4.
(2′S)‐2′‐Deoxy‐2′‐C‐methyluridine and (2′R)‐2′‐deoxy‐2′‐C‐methyluridine were incorporated in the 3′‐overhang region of the sense and antisense strands and in positions 2 and 5 of the seed region of siRNA duplexes directed against Renilla luciferase, whereas (2′S)‐2′‐deoxy‐2′‐C‐methylcytidine was incorporated in the 6‐position of the seed region of the same constructions. A dual luciferase reporter assay in transfected HeLa cells was used as a model system to measure the IC50 values of 24 different modified duplexes. The best results were obtained by the substitution of one thymidine unit in the antisense 3′‐overhang region by (2′S)‐ or (2′R)‐2′‐deoxy‐2′‐C‐methyluridine, reducing IC50 to half of the value observed for the natural control. The selectivity of the modified siRNA was measured, it being found that modifications in positions 5 and 6 of the seed region had a positive effect on the ON/OFF activity.  相似文献   

5.
Palladium‐catalyzed C N bond forming reactions of 6‐bromo‐ as well as 6‐chloropurine ribonucleosides and the 2′‐deoxy analogues with arylamines are described. Efficient conversions were observed with palladium(II) acetate/Xantphos/cesium carbonate, in toluene at 100 °C. Reactions of the bromonucleoside derivatives could be conducted at a lowered catalytic loading [5 mol% Pd(OAc)2/7.5 mol% Xantphos], whereas good product yields were obtained with a higher catalyst load [10 mol% Pd(OAc)2/15 mol% Xantphos] when the chloro analogue was employed. Among the examples evaluated, silyl protection for the hydroxy groups appears better as compared to acetyl. The methodology has been evaluated via reactions with a variety of arylamines and by synthesis of biologically relevant deoxyadenosine and adenosine dimers. This is the first detailed analysis of aryl amination reactions of 6‐chloropurine nucleosides, and comparison of the two halogenated nucleoside substrates.  相似文献   

6.
Based on the potent phosphodiesterase 10 A (PDE10A) inhibitor PQ‐10, we synthesized 32 derivatives to determine relationships between their molecular structure and binding properties. Their roles as potential positron emission tomography (PET) ligands were evaluated, as well as their inhibitory potency toward PDE10A and other PDEs, and their metabolic stability was determined in vitro. According to our findings, halo‐alkyl substituents at position 2 of the quinazoline moiety and/or halo‐alkyloxy substituents at positions 6 or 7 affect not only the compounds′ affinity, but also their selectivity toward PDE10A. As a result of substituting the methoxy group for a monofluoroethoxy or difluoroethoxy group at position 6 of the quinazoline ring, the selectivity for PDE10A over PDE3A increased. The same result was obtained by 6,7‐difluoride substitution on the quinoxaline moiety. Finally, fluorinated compounds (R)‐7‐(fluoromethoxy)‐6‐methoxy‐4‐(3‐(quinoxaline‐2‐yloxy)pyrrolidine‐1‐yl)quinazoline ( 16 a ), 19 a – d , (R)‐tert‐butyl‐3‐(6‐fluoroquinoxalin‐2‐yloxy)pyrrolidine‐1‐carboxylate ( 29 ), and 35 (IC50 PDE10A 11–65 nM ) showed the highest inhibitory potential. Further, fluoroethoxy substitution at position 7 of the quinazoline ring improved metabolic stability over that of the lead structure PQ‐10.  相似文献   

7.
A series of sugar‐modified derivatives of cytostatic 7‐heteroaryl‐7‐deazaadenosines (2′‐deoxy‐2′‐fluororibo‐ and 2′‐deoxy‐2′,2′‐difluororibonucleosides) bearing an aryl or heteroaryl group at position 7 was prepared and screened for biological activity. The difluororibonucleosides were prepared by non‐ stereoselective glycosidation of 6‐chloro‐7‐deazapurine with benzoyl‐protected 2‐deoxy‐2,2‐difluoro‐D ‐erythro‐pentofuranosyl‐1‐mesylate, followed by amination and aqueous Suzuki cross‐couplings with (het)arylboronic acids. The fluororibo derivatives were prepared by aqueous palladium‐catalyzed cross‐coupling reactions of the corresponding 7‐iodo‐7‐deazaadenine 2′‐deoxy‐2′‐fluororibonucleoside 20 with (het)arylboronic acids. The key intermediate 20 was prepared by a six‐step sequence from the corresponding arabinonucleoside by selective protection of 3′‐ and 5′‐hydroxy groups with acid‐labile groups, followed by stereoselective SN2 fluorination and deprotection. Some of the title nucleosides and 7‐iodo‐7‐deazaadenine intermediates showed micromolar cytostatic or anti‐HCV activity. The most active were 7‐iodo and 7‐ethynyl derivatives. The corresponding 2′‐deoxy‐2′,2′‐difluororibonucleoside 5′‐O‐triphosphates were found to be good substrates for bacterial DNA polymerases, but are inhibitors of human polymerase α.  相似文献   

8.
2′‐Fluoro‐2′‐deoxyguanosine has been reported to have potent anti‐influenza virus activity in vitro and in vivo. Herein we describe the synthesis and biological evaluation of 6‐modified 2′‐fluoro‐2′‐deoxyguanosine analogues and their corresponding phosphoramidate ProTides as potential anti‐influenza virus agents. Whereas the parent nucleosides were devoid of antiviral activity in two different cellular assays, the 5′‐O‐naphthyl(methoxy‐L ‐alaninyl) ProTide derivatives of 6‐O‐methyl‐2′‐fluoro‐2′‐deoxyguanosine, 6‐O‐ethyl‐2′‐fluoro‐2′‐deoxyguanosine, and 2′‐deoxy‐2′‐fluoro‐6‐chloroguanosine, and the 5′‐O‐naphthyl(ethoxy‐L ‐alaninyl) ProTide of 6‐O‐ethyl‐2′‐fluoro‐2′‐deoxyguanosine displayed antiviral EC99 values of ~12 μM . The antiviral results are supported by metabolism studies. Rapid conversion into the L ‐alaninyl metabolite and then 6‐modified 2′‐fluoro‐2′‐deoxyguanosine 5′‐monophosphate was observed in enzymatic assays with yeast carboxypeptidase Y or crude cell lysate. Evidence for efficient removal of the 6‐substituent on the guanine part was provided by enzymatic studies with adenosine deaminase, and by molecular modeling of the nucleoside 5′‐monophosphates in the catalytic site of a model of ADAL1, thus indicating the utility of the double prodrug concept.  相似文献   

9.
In the presence of Na2CO3 (1S,3S)‐ and (1R,3S)‐1‐(2,2‐dimethoxyethyl)‐2‐(1,3‐dioxobutyl)‐3‐(1,3‐dioxo‐butyl)oxymethyl‐1,2,3,4‐tetrahydrocarboline ( 1 ) were transformed into (1S,3S)‐ and (1R,3S)‐1‐(2,2‐dimethoxyethyl)‐2‐(1,3‐dioxobutyl)‐3‐hydroxymethyl‐1,2,3,4‐tetrahydrocarboline ( 2 ), which were cyclized to (6S)‐3‐acetyl‐6‐hydroxymethyl‐4,6,7,12‐tetrahydro‐4‐oxoindolo[2,3‐a]quinolizine ( 4 ), via(6S,12bS)‐ and (6S,12bR)‐3‐acetyl‐2‐hydroxyl‐6‐hydroxymethyl‐1,2,3,4,6,7,12,12b‐octahydro‐4‐oxoindolo[2,3‐a]quinoline ( 3 ). (6S)‐ 4 was coupled with Boc‐Gly, Boc‐L‐Asp(β‐benzyl ester), or Boc‐L‐Gln to give 6‐amino acid substituted (6S)‐3‐acetyl‐4,6,7,12‐tetrahydro‐4‐oxoindolo[2,3‐a]quinolizines 5a , 5b , or 5c , respectively. After the removal of Boc from (6S)‐ 5a (6S)‐3‐acetyl‐6‐glycyl‐4,6,7,12‐tetrahydro‐4‐oxoindolo[2,3‐a]quinolizine ( 6 ) was obtained. The anticancer activities of (6S)‐ 5 and (6S)‐ 6 in vitro were tested.  相似文献   

10.
The presence of a bulky substituent at the 2‐position of 1,3‐butadiene derivatives is known to affect the polymerization behavior and microstructure of the resulting polymers. Free‐radical polymerization of 2‐triethoxysilyl‐1,3‐butadiene ( 1 ) was carried out under various conditions, and its polymerization behavior was compared with that of 2‐triethoxymethyl‐ and other silyl‐substituted butadienes. A sticky polymer of high 1,4‐structure ( ) was obtained in moderate yield by 2,2′‐azobisisobutyronitrile (AIBN)‐initiated polymerization. A smaller amount of Diels–Alder dimer was formed compared with the case of other silyl‐substituted butadienes. The rate of polymerization (Rp) was found to be Rp = k[AIBN]0.5[ 1 ]1.2, and the overall activation energy for polymerization was determined to be 117 kJ mol?1. The monomer reactivity ratios in copolymerization with styrene were r 1 = 2.65 and rst = 0.26. The glass transition temperature of the polymer of 1 was found to be ?78 °C. Free‐radical polymerization of 1 proceeded smoothly to give the corresponding 1,4‐polydiene. The 1,4‐E content of the polymer was less compared with that of poly(2‐triethoxymethyl‐1,3‐butadiene) and poly(2‐triisopropoxysilyl‐1,3‐butadiene) prepared under similar conditions. Copyright © 2010 Society of Chemical Industry  相似文献   

11.
8‐Benzyl‐substituted tetrahydropyrazino[2,1‐f]purinediones were designed as tricyclic xanthine derivatives containing a basic nitrogen atom in the tetrahydropyrazine ring to improve water solubility. A library of 69 derivatives was prepared and evaluated in radioligand binding studies at adenosine receptor (AR) subtypes and for their ability to inhibit monoamine oxidases (MAO). Potent dual‐target‐directed A1/A2A adenosine receptor antagonists were identified. Several compounds showed triple‐target inhibition; one of the best compounds was 8‐(2,4‐dichloro‐5‐fluorobenzyl)‐1,3‐dimethyl‐6,7,8,9‐tetrahydropyrazino[2,1‐f]purine‐2,4(1H,3H)‐dione ( 72 ) (human AR: Ki A1 217 nM , A2A 233 nM ; IC50 MAO‐B: 508 nM ). Dichlorinated compound 36 [8‐(3,4‐dichlorobenzyl)‐1,3‐dimethyl‐6,7,8,9‐tetrahydropyrazino[2,1‐f]purine‐2,4(1H,3H)‐dione] was found to be the best triple‐target drug in rat (Ki A1 351 nM , A2A 322 nm; IC50 MAO‐B: 260 nM ), and may serve as a useful tool for preclinical proof‐of‐principle studies. Compounds that act at multiple targets relevant for symptomatic as well as disease‐modifying treatment of neurodegenerative diseases are expected to show advantages over single‐target therapeutics.  相似文献   

12.
In accordance with a novel strategy for generating the 2‐benzazepine scaffold by connecting C6–C1 and C3–N building blocks, a set of 5‐phenylsulfanyl‐ and 5‐benzyl‐substituted tetrahydro‐2‐benzazepines was synthesized and pharmacologically evaluated. Key steps of the synthesis were the Heck reaction, the Stetter reaction, a reductive cyclization, and the introduction of diverse N substituents at the end of the synthesis. High σ1 affinity was achieved for 2‐benzazepines with linear or branched alk(en)yl residues containing at least an n‐butyl substructure. The butyl‐ and 4‐fluorobenzyl‐substituted derivatives, (±)‐5‐benzyl‐2‐butyl‐2,3,4,5‐tetrahydro‐1H‐2‐benzazepine ( 19 b ) and (±)‐5‐benzyl‐2‐(4‐fluorobenzyl)‐2,3,4,5‐tetrahydro‐1H‐2‐benzazepine ( 19 m ), show high selectivity over more than 50 other relevant targets, including the σ2 subtype and various binding sites of the N‐methyl‐D ‐aspartate (NMDA) receptor. In the Irwin screen, 19 b and 19 m showed clean profiles without inducing considerable side effects. Compounds 19 b and 19 m did not reveal significant analgesic and cognition‐enhancing activity. Compound 19 m did not have any antidepressant‐like effects in mice.  相似文献   

13.
Heterobivalent ligands that possess pharmacophores designed to interact with both the A1 adenosine receptor (A1AR) and the β2 adrenergic receptor (β2AR) were prepared. More specifically, these ligands contain an adenosine moiety that is linked via its N6‐position to the amino group of the saligenin‐substituted ethanolamine moiety present in the well‐known β2AR agonist, salbutamol. The affinities of these ligands were determined at both receptors and found to vary with linker length and composition. With all compounds, affinity and functional potencies were found to have selectivity for the A1AR over the β2AR. In all cases, cAMP accumulation (a β2AR‐mediated response) was mainly observed when the A1AR was blocked or its function decreased by pertussis toxin or chronic agonist treatment. This suggests that heterobivalent compounds for receptors that mediate opposite responses might be useful for elucidating the mechanisms of receptor cross‐talk and how this interaction, in terms of responsiveness, may change under pathophysiological conditions.  相似文献   

14.
The enantioselective 1,4‐addition of arylboronic acids to β‐arylenones to give β‐diaryl ketones was carried out at 0–25 °C in the presence of a dicationic palladium(II) catalyst, [Pd(S,S‐chiraphos)(PhCN)2](SbF6)2. Addition of a silver salt such as silver tetrafluoroborate [AgBF4] or silver hexafluoroantimonate [AgSbF6] (5–10 mol %) was effective to achieve high enantioselectivities at low temperatures (92–99 % ee) and to reduce the catalyst loading to 0.05 mol %. The protocol provided a simple access to 4‐aryl‐4H‐chromenes. Optically active chromenes were synthesized with up to 99 % ee via dehydration of the 1,4‐adducts between arylboronic acids and β‐(2‐hydroxyaryl)‐α,β‐unsaturated ketones.  相似文献   

15.
Aliphatic [n]‐polyurethanes have recently been synthesized from ω‐isocyanato‐α‐alkanols or, more traditionally, by cationic ring‐opening polymerization of cyclourethanes or by the Bu2Sn(OMe)2‐promoted polycondensation of ω‐hydroxy‐α‐O‐phenylurethane alkanes. For the latter procedures, the conditions employed do not seem to be suitable for highly functionalized monomers. In contrast, the polymerization of ω‐amino‐α‐phenylcarbonate alkanes is expected to occur under milder conditions. ω‐Amino‐α‐phenylcarbonate alkanes have been synthesized from 6‐aminohexanol (1) and 3‐aminopropanol (6). The procedure involves the N‐Boc protection of the amino group, followed by activation of the alcohol. Removal of the N‐Boc affords the corresponding ω‐amino‐1‐O‐phenyloxycarbonyloxyalkane hydrochlorides. Other oligomeric comonomers between 1 and 6 have been prepared. The polymerization of these precursors takes place in the absence of metal catalysts to afford the corresponding linear and regioregular [n]‐polyurethanes. The procedure described is useful for the preparation of stable ω‐amino‐α‐phenylcarbonate alkane derivatives, which possess varied chain lengths between the terminal functions. These monomers yield [n]‐polyurethanes having various structures starting from just two aminoalkanols. The polyurethanes were obtained in high yields, with reasonable molecular weight and polydispersity values, and they were characterized spectroscopically and thermally. These studies reveal constitutionally uniform structures that are free of carbonate or urea linkages. Copyright © 2010 Society of Chemical Industry  相似文献   

16.
The reaction of the Cu(II) bis N,O‐chelate‐complexes of L‐2,4‐diaminobutyric acid, L‐ornithine and L‐lysine {Cu[H2N–CH(COO)(CH2)nNH3]2}2+(Cl)2 (n = 2–4) with terephthaloyl dichloride or isophthaloyl dichloride gives the polymeric complexes {‐OC–C6H4–CO–NH–(CH2)n–CH(nh2)(COO)Cu(OOC)(NH2)CH–CH2)n–NH‐}x 1 – 5 . From these the metal can be removed by precipitation of Cu(II) with H2S. The liberated ω,ω′‐N,N′‐diterephthaloyl (or iso‐phthaloyl)‐diaminoacids 6 – 10 react with [Ru(cymene)Cl2]2, [Ru(C6Me6)Cl2]2, [Cp*RhCl2]2 or [Cp*IrCl2]2 to the ligand bridged bis‐amino acidate complexes [Ln(Cl)M–(OOC)(NH2)CH–(CH2)nNH–CO]2–C6H4 11 – 14 .  相似文献   

17.
A series of bioisosteric N1‐ and N2‐substituted 5‐(piperidin‐4‐yl)‐3‐hydroxypyrazole analogues of the partial GABAAR agonists 4‐PIOL and 4‐PHP have been designed, synthesized, and characterized pharmacologically. The unsubstituted 3‐hydroxypyrazole analogue of 4‐PIOL ( 2 a ; IC50~300 μM ) is a weak antagonist at the α1β2γ2 GABAAR, whereas substituting the N1‐ or N2‐position with alkyl or aryl substituents resulted in antagonists with binding affinities in the high nanomolar to low micromolar range at native rat GABAARs. Docking studies using a α1β2γ2 GABAAR homology model along with the obtained SAR indicate that the N1‐substituted analogues of 4‐PIOL and 4‐PHP, 2 a – k , and previously reported 3‐substituted 4‐PHP analogues share a common binding mode to the orthosteric binding site in the receptor. Interestingly, the core scaffold of the N2‐substituted analogues of 4‐PIOL and 4‐PHP, 3 b – k , are suggested to flip 180° thereby adapting to the binding pocket and addressing a cavity situated above the core scaffold.  相似文献   

18.
Non‐natural RNA modifications have been widely used to study the function and structure of RNA. Expanding the study of RNA further requires versatile and efficient tools for site‐specific RNA modification. We recently established a new strategy for the site‐specific modification of RNA based on a functionality‐transfer reaction between an oligodeoxynucleotide (ODN) probe and an RNA substrate. 2′‐Deoxy‐6‐thioguanosine was used to anchor the transfer group, and the 4‐amino group of cytosine or the 2‐amino group of guanine was specifically modified. In this study, 2′‐deoxy‐4‐thiothymidine was adopted as a new platform to target the 6‐amino group of adenosine. The (E)‐pyridinyl vinyl keto transfer group was attached to the 4‐thioT in the ODN probe, and it was efficiently and specifically transferred to the 6‐amino group of the opposing adenosine in RNA in the presence of CuCl2. This method expands the available RNA target sites for specific modification.  相似文献   

19.
6‐Bromo‐2‐iminopyridine cobalt(II) complexes bearing different imine‐carbon substituents ( Co1 – Co7 ) were synthesized and subsequently employed for 1,3‐butadiene polymerization. All the complexes were identified using Fourier transform infrared spectra and elemental analysis, and complexes Co1 and Co3 were further characterized using single‐crystal X‐ray diffraction analysis, demonstrating they adopted distorted trigonal bipyramidal and tetrahedral geometries, respectively. Activated by methylaluminoxane, these complexes exhibited high cis‐1,4 selectivity, and the activity was highly dependent on the substituent at the imine‐carbon position of the ligand. Addition of PPh3 to the polymerization systems could enhance the catalytic activity and simultaneously switched the selectivity from cis‐1,4 to cis‐1,2 manner. On the basis of the obtained results, a plausible mechanism involving the regulation of selectivity and activity is proposed. © 2019 Society of Chemical Industry  相似文献   

20.
Analysis of the recently solved X‐ray crystal structures of Saccharomyces cerevisiae ribonucleotide reductase I (ScRnr1) in complex with effectors and substrates led to the discovery of a conserved water molecule located at the active site that interacted with the 2′‐hydroxy group of the nucleoside ribose. In this study 2′‐(2‐hydroxyethyl)‐2′‐deoxyadenosine 1 and the 5′‐diphosphate derivative 2 were designed and synthesized to see if the conserved water molecule could be displaced by a hydroxymethylene group, to generate novel RNR inhibitors as potential antitumor agents. Herein we report the synthesis of analogues 1 and 2 , and the co‐crystal structure of adenosine diphosphate analogue 2 bound to ScRnr1, which shows the conserved water molecule is displaced as hypothesized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号