首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The NS5A protein plays a critical role in the replication of HCV and has been the focus of numerous research efforts over the past few years. NS5A inhibitors have shown impressive in vitro potency profiles in HCV replicon assays, making them attractive components for inclusion in all oral combination regimens. Early work in the NS5A arena led to the discovery of our first clinical candidate, MK‐4882 [2‐((S)‐pyrrolidin‐2‐yl)‐5‐(2‐(4‐(5‐((S)‐pyrrolidin‐2‐yl)‐1H‐imidazol‐2‐yl)phenyl)benzofuran‐5‐yl)‐1H‐imidazole]. While preclinical proof‐of‐concept studies in HCV‐infected chimpanzees harboring chronic genotype 1 infections resulted in significant decreases in viral load after both single‐ and multiple‐dose treatments, viral breakthrough proved to be a concern, thus necessitating the development of compounds with increased potency against a number of genotypes and NS5A resistance mutations. Modification of the MK‐4882 core scaffold by introduction of a cyclic constraint afforded a series of tetracyclic inhibitors, which showed improved virologic profiles. Herein we describe the research efforts that led to the discovery of MK‐8742, a tetracyclic indole‐based NS5A inhibitor, which is currently in phase 2b clinical trials as part of an all‐oral, interferon‐free regimen for the treatment of HCV infection.  相似文献   

2.
The de novo design of molecules from scratch with tailored biological activity is still the major intellectual challenge in chemical biology and drug discovery. Herein we validate natural‐product‐derived fragments (NPDFs) as excellent molecular seeds for the targeted de novo discovery of lead structures for the modulation of therapeutically relevant proteins. The application of this de novo approach delivered, in synergy with the combination of allosteric and active site binding motifs, highly selective and ligand‐efficient non‐zinc‐binding ( 3 : 4‐{[5‐(2‐{[(3‐methoxyphenyl)methyl]carbamoyl}eth‐1‐yn‐1‐yl)‐2,4‐dioxo‐1,2,3,4‐tetrahydropyrimidin‐1‐yl]methyl}benzoic acid) as well as zinc‐binding ( 4 : 4‐({5‐[2‐({[3‐(3‐carboxypropoxy)phenyl]methyl}carbamoyl)eth‐1‐yn‐1‐yl]‐2,4‐dioxo‐1,2,3,4‐tetrahydropyrimidin‐1‐yl}methyl)benzoic acid) uracil‐based MMP‐13 inhibitors presenting IC50 values of 11 nM ( 3 : LE=0.35) and 6 nM ( 4 : LE=0.31).  相似文献   

3.
Corrosion inhibition of three new synthesized cationic surfactants, N‐(2‐(((Z)‐4‐(pyridin‐4‐yl)but‐3‐en‐1‐yl)amino)ethyl)‐N‐(2‐((E)‐(pyridin‐4‐ylmethylene)amino)ethyl)dodecan‐1‐aminium bromide I(4N), N1,N2‐didodecyl‐N1‐((Z)‐4‐(pyridin‐4‐yl)but‐3‐en‐1‐yl)‐N2‐(2‐((E)‐(pyridin‐4‐ylmethylene)amino)ethyl)ethane‐1,2‐diaminium bromide II(4N) and 1‐dodecyl‐4‐((E)‐((2‐(dodecyl(2‐(dodecyl((Z)‐4‐(1‐dodecylpyridin‐1‐ium‐4‐yl)but‐3‐en‐1‐yl)ammonio)ethyl)ammonio)ethyl)imino)methyl)pyridin‐1‐ium bromide IV(4N) on carbon steel was investigated by weight loss, electrochemical impedance spectroscopy and polarization measurements. Results show that the synthesized cationic surfactants inhibit corrosion of carbon steel in 1 M HCl. The inhibitive action occurs by virtue of adsorption on the metal surface following a Langmuir adsorption isotherm model. Polarization curves reveal that the investigated cationic surfactants can be classified as mixed inhibitor types. The variations in the corrosion inhibition efficiency between three cationic surfactants are correlated with their chemical structures, with more hydrophobic surfactants yielding higher inhibition efficiency.  相似文献   

4.
Ergolines were recently identified as a novel class of H3 receptor (H3R) inverse agonists. Although their optimization led to drug candidates with encouraging properties for the treatment of narcolepsy, brain penetration remained low. To overcome this issue, ergoline 1 ((6aR,9R,10aR)‐4‐(2‐(dimethylamino)ethyl)‐N‐phenyl‐9‐(pyrrolidine‐1‐carbonyl)‐6,6a,8,9,10,10a‐hexahydroindolo[4,3‐fg]quinoline‐7(4H)‐carboxamide)) was transformed into a series of indole derivatives with high H3R affinity. These new molecules were profiled by simultaneous determination of their brain receptor occupancy (RO) levels and pharmacodynamic (PD) effects in mice. These efforts culminated in the discovery of 15 m ((R)‐1‐isopropyl‐5‐(1‐(2‐(2‐methylpyrrolidin‐1‐yl)ethyl)‐1H‐indol‐4‐yl)pyridin‐2(1H)‐one), which has an ideal profile showing a strong correlation of PD effects with RO, and no measurable safety liabilities. Its desirably short duration of action was confirmed by electroencephalography (EEG) measurements in rats.  相似文献   

5.
The development of drug resistance remains a critical problem for current HIV‐1 antiviral therapies, creating a need for new inhibitors of HIV‐1 replication. We previously reported on a novel anti‐HIV‐1 compound, N2‐(phenoxyacetyl)‐N‐[4‐(1‐piperidinylcarbonyl)benzyl]glycinamide ( 14 ), that binds to the highly conserved phosphatidylinositol (4,5)‐bisphosphate (PI(4,5)P2) binding pocket of the HIV‐1 matrix (MA) protein. In this study, we re‐evaluate the hits from the virtual screen used to identify compound 14 and test them directly in an HIV‐1 replication assay using primary human peripheral blood mononuclear cells. This study resulted in the identification of three new compounds with antiviral activity; 2‐(4‐{[3‐(4‐fluorophenyl)‐1,2,4‐oxadiazol‐5‐yl]methyl})‐1‐piperazinyl)‐N‐(4‐methylphenyl)acetamide ( 7 ), 3‐(2‐ethoxyphenyl)‐5‐[[4‐(4‐nitrophenyl)piperazin‐1‐yl]methyl]‐1,2,4‐oxadiazole ( 17 ), and N‐[4‐ethoxy‐3‐(1‐piperidinylsulfonyl)phenyl]‐2‐(imidazo[2,1‐b][1,3]thiazol‐6‐yl)acetamide ( 18 ), with compound 7 being the most potent of these hits. Mechanistic studies on 7 demonstrated that it directly interacts with and functions through HIV‐1 MA. In accordance with our drug target, compound 7 competes with PI(4,5)P2 for MA binding and, as a result, diminishes the production of new virus. Mutation of residues within the PI(4,5)P2 binding site of MA decreased the antiviral effect of compound 7 . Additionally, compound 7 displays a broadly neutralizing anti‐HIV activity, with IC50 values of 7.5–15.6 μM for the group M isolates tested. Taken together, these results point towards a novel chemical probe that can be used to more closely study the biological role of MA and could, through further optimization, lead to a new class of anti‐HIV‐1 therapeutics.  相似文献   

6.
Nonstructural protein 5A (NS5A) represents a novel target for the treatment of hepatitis C virus (HCV). Daclatasvir, recently reported by Bristol–Myers–Squibb, is a potent NS5A inhibitor currently under investigation in phase 3 clinical trials. While the performance of daclatasvir has been impressive, the emergence of resistance could prove problematic and as such, improved analogues are being sought. By varying the biphenyl‐imidazole unit of daclatasvir, novel inhibitors of HCV NS5A were identified with an improved resistance profile against mutant strains of the virus while retaining the picomolar potency of daclatasvir. One compound in particular, methyl ((S)‐1‐((S)‐2‐(4‐(4‐(6‐(2‐((S)‐1‐((methoxycarbonyl)‐L ‐valyl)pyrrolidin‐2‐yl)‐1H‐imidazol‐5‐yl)quinoxalin‐2‐yl)phenyl)‐1H‐imidazol‐2‐yl)pyrrolidin‐1‐yl)‐3‐methyl‐1‐oxobutan‐2‐yl)carbamate ( 17 ), exhibited very promising activity and showed good absorption and a long predicted human pharmacokinetic half‐life. This compound represents a promising lead that warrants further evaluation.  相似文献   

7.
Ergoline derivative (6aR,9R)‐4‐(2‐(dimethylamino)ethyl)‐N‐phenyl‐9‐(pyrrolidine‐1‐carbonyl)‐6,6a,8,9‐tetrahydroindolo[4,3‐fg]quinoline‐7(4H)‐carboxamide ( 1 ), a CXCR3 antagonist, also inhibits human histamine H3 receptors (H3R) and represents a structurally novel H3R inverse agonist chemotype. It displays favorable pharmacokinetic and in vitro safety profiles, and served as a lead compound in a program to explore ergoline derivatives as potential drug candidates for the treatment of narcolepsy. A key objective of this work was to enhance the safety and efficacy profiles of 1 , while minimizing its duration of action to mitigate the episodes of insomnia documented with previously reported clinical candidates during the night following administration. Modifications to the ergoline core at positions 1, 6 and 8 were systematically investigated, and derivative 23 (1‐((4aR,8R,9aR)8‐(hydroxymethyl)‐1‐(2‐((R)‐2‐methylpyrrolidin‐1‐yl)ethyl)‐4,4a,7,8,9,9a‐hexahydroindolo[1,14‐fg]quinolin‐6(1H)‐yl)ethanone) was identified as a promising lead compound. Derivative 23 has a desirable pharmacokinetic profile and demonstrated efficacy by enhancing brain concentrations of tele‐methylhistamine, a major histamine metabolite. This validates the potential of the ergoline scaffold to serve as a template for the development of H3R inverse agonists.  相似文献   

8.
Sphingosine‐1‐phosphate (S1P) receptor agonists have shown promise as therapeutic agents for multiple sclerosis (MS) due to their regulatory roles within the immune, central nervous system, and cardiovascular system. Here, the design and optimization of novel [1,2,4]oxadiazole derivatives as selective S1P receptor agonists are described. The structure–activity relationship exploration was carried out on the three dominant segments of the series: modification of the polar head group (P), replacement of the oxadiazole linker (L) with different five‐membered heterocycles, and the use of diverse 2,2′‐disubstituted biphenyl moieties as the hydrophobic tail (H). All three segments have a significant impact on potency, S1P receptor subtype selectivity, physicochemical properties, and in vitro absorption, distribution, metabolism, excretion and toxicity (ADMET) profile of the compounds. From these optimization studies, a selective S1P1 agonist, N‐methyl‐N‐(4‐{5‐[2‐methyl‐2′‐(trifluoromethyl)biphenyl‐4‐yl]‐1,2,4‐oxadiazol‐3‐yl}benzyl)glycine ( 45 ), and a dual S1P1,5 agonist, N‐methyl‐N‐(3‐{5‐[2′‐methyl‐2‐(trifluoromethyl)biphenyl‐4‐yl]‐1,2,4‐oxadiazol‐3‐yl}benzyl)glycine ( 49 ), emerged as frontrunners. These compounds distribute predominantly in lymph nodes and brain over plasma and induce long lasting decreases in lymphocyte count after oral administration. When evaluated head‐to‐head in an experimental autoimmune encephalomyelitis mouse model, together with the marketed drug fingolimod, a pan‐S1P receptor agonist, S1P1,5 agonist 49 demonstrated comparable efficacy while S1P1‐selective agonist 45 was less potent. Compound 49 is not a prodrug, and its improved property profile should translate into a safer treatment of relapsing forms of MS.  相似文献   

9.
In the search for effective multifunctional agents for the treatment of Alzheimer’s disease (AD), a series of novel hybrids incorporating benzofuran and chalcone fragments were designed and synthesized. These hybrids were screened by using a transgenic Caenorhabditis elegans model that expresses the human β‐amyloid (Aβ) peptide. Among the hybrids investigated, (E)‐3‐(7‐methyl‐2‐(4‐methylbenzoyl)benzofuran‐5‐yl)‐1‐phenylprop‐2‐en‐1‐one ( 4 f ), (E)‐3‐(2‐benzoyl‐7‐methylbenzofuran‐5‐yl)‐1‐phenylprop‐2‐en‐1‐one ( 4 i ), and (E)‐3‐(2‐benzoyl‐7‐methylbenzofuran‐5‐yl)‐1‐(thiophen‐2‐yl)prop‐2‐en‐1‐one ( 4 m ) significantly decreased Aβ aggregation and increased acetylcholine (ACh) levels along with the overall availability of ACh at the synaptic junction. These compounds were also found to decrease acetylcholinesterase (AChE) levels, reduce oxidative stress in the worms, lower lipid content, and to provide protection against chemically induced cholinergic neurodegeneration. Overall, the multifunctional effects of these hybrids qualify them as potential drug leads for further development in AD therapy.  相似文献   

10.
In this work, we report the antileishmanial activity of 23 compounds based on 2‐pyrazyl and 2‐pyridylhydrazone derivatives. The compounds were tested against the promastigotes of Leishmania amazonensis and L. braziliensis, murine macrophages, and intracellular L. amazonensis amastigotes. The most potent antileishmanial compound was selected for investigation into its mechanism of action. Among the evaluated compounds, five derivatives [(E)‐3‐((2‐(pyridin‐2‐yl)hydrazono)methyl)benzene‐1,2‐diol ( 2 b ), (E)‐4‐((2‐(pyridin‐2‐yl)hydrazono)methyl)benzene‐1,3‐diol ( 2 c ), (E)‐4‐nitro‐2‐((2‐(pyrazin‐2‐yl)hydrazono)methyl)phenol ( 2 s ), (E)‐2‐(2‐(pyridin‐2‐ylmethylene)hydrazinyl)pyrazine ( 2 u ), and (E)‐2‐(2‐((5‐nitrofuran‐2‐yl)methylene)hydrazinyl)pyrazine ( 2 v )] exhibited significant activity against L. amazonensis amastigote forms, with IC50 values below 20 μm . The majority of the compounds did not show any toxic effect on murine macrophages. Preliminary studies on the mode of action of members of this hydrazine‐derived series indicate that the accumulation of reactive oxygen species (ROS) and disruption of parasite mitochondrial function are important for the pharmacological effect on L. amazonensis promastigotes.  相似文献   

11.
12.
Methyl‐2‐amino‐5‐[2‐(4‐methoxyphenethyl)]thiophene‐3‐carboxylate ( 8 c ) is the prototype of a well‐defined class of tumor‐selective agents. Compound 8 c preferentially inhibited the proliferation of a number of tumor cell lines including many human T‐lymphoma/leukemia cells, but also several prostate, renal, central nervous system and liver tumor cell types. Instead, a broad variety of other tumor cell lines including B‐lymphomas and HeLa cells were not affected. The tumor selectivity (TS; selectivity index or preferential suppression of CEM lymphoma (IC50=0.90 μM ) versus HeLa tumor cell carcinoma (IC50=39 μM )) amounted up to ~43 for 8 c . At higher concentrations, the compound proved cytotoxic rather than cytostatic. The antiproliferative potency and selectivity of 8 c could be preserved by replacing the ethyl linker between the 2‐amino‐3‐carboxymethylthiophene and the substituted aryl by a thioalkyl but not by an oxyalkyl nor an aminoalkyl. Among >50 novel 8 c derivatives, the 5‐(4‐ethyl‐ and 4‐isopropylarylmethylthio)thiophene analogues, methyl‐2‐amino‐5‐((4‐ethylphenylthio)methyl)thiophene‐3‐carboxylate ( 13 m ) and methyl‐2‐amino‐5‐((4‐isopropylphenylthio)methyl)thiophene‐3‐carboxylate ( 13 n ), were more potent (IC50: 0.3–0.4 μM ) and selective (TS: 100–144) anti‐T‐lymphoma/leukemia agents than the prototype compound.  相似文献   

13.
The field of small‐molecule orexin antagonist research has evolved rapidly in the last 15 years from the discovery of the orexin peptides to clinical proof‐of‐concept for the treatment of insomnia. Clinical programs have focused on the development of antagonists that reversibly block the action of endogenous peptides at both the orexin 1 and orexin 2 receptors (OX1R and OX2R), termed dual orexin receptor antagonists (DORAs), affording late‐stage development candidates including Merck’s suvorexant (new drug application filed 2012). Full characterization of the pharmacology associated with antagonism of either OX1R or OX2R alone has been hampered by the dearth of suitable subtype‐selective, orally bioavailable ligands. Herein, we report the development of a selective orexin 2 antagonist (2‐SORA) series to afford a potent, orally bioavailable 2‐SORA ligand. Several challenging medicinal chemistry issues were identified and overcome during the development of these 2,5‐disubstituted nicotinamides, including reversible CYP inhibition, physiochemical properties, P‐glycoprotein efflux and bioactivation. This article highlights structural modifications the team utilized to drive compound design, as well as in vivo characterization of our 2‐SORA clinical candidate, 5′′‐chloro‐N‐[(5,6‐dimethoxypyridin‐2‐yl)methyl]‐2,2′:5′,3′′‐terpyridine‐3′‐carboxamide (MK‐1064), in mouse, rat, dog, and rhesus sleep models.  相似文献   

14.
Herein we report the discovery of compound 6 [KST016366; 4‐((2‐(3‐(4‐((4‐ethylpiperazin‐1‐yl)methyl)‐3‐(trifluoromethyl)phenyl)ureido)benzo[d]thiazol‐6‐yl)oxy)picolinamide] as a new potent multikinase inhibitor through minor structural modification of our previously reported RAF kinase inhibitor A . In vitro anticancer evaluation of 6 showed substantial broad‐spectrum antiproliferative activity against 60 human cancer cell lines. In particular, it showed GI50 values of 51.4 and 19 nm against leukemia K‐562 and colon carcinoma KM12 cell lines, respectively. Kinase screening of compound 6 revealed its nanomolar‐level inhibitory activity of certain oncogenic kinases implicated in both tumorigenesis and angiogenesis. Interestingly, 6 displays IC50 values of 0.82, 3.81, and 53 nm toward Tie2, TrkA, and ABL‐1 (wild‐type and T315I mutant) kinases, respectively. Moreover, 6 is orally bioavailable with a favorable in vivo pharmacokinetic profile. Compound 6 may serve as a promising candidate for further development of potent anticancer chemotherapeutics.  相似文献   

15.
A series of imidazo[2,1‐b][1,3,4]thiadiazole‐linked oxindoles composed of an A, B, C and D ring system were synthesized and investigated for anti‐proliferative activity in various human cancer cell lines; test compounds were variously substituted at rings C and D. Among them, compounds 7 ((E)‐5‐fluoro‐3‐((6‐p‐tolyl‐2‐(3,4,5‐trimethoxyphenyl)‐imidazo[2,1‐b][1,3,4]thiadiazol‐5‐yl)methylene)indolin‐2‐one), 11 ((E)‐3‐((6‐p‐tolyl‐2‐(3,4,5‐trimethoxyphenyl)imidazo[2,1‐b][1,3,4]thiadiazol‐5‐yl)methylene)indolin‐2‐one), and 15 ((E)‐6‐chloro‐3‐((6‐phenyl‐2‐(3,4,5‐trimethoxyphenyl)imidazo[2,1‐b][1,3,4]thiadiazol‐5‐yl)methylene)indolin‐2‐one) exhibited potent anti‐proliferative activity. Treatment with these three compounds resulted in accumulation of cells in G2/M phase, inhibition of tubulin assembly, and increased cyclin‐B1 protein levels. Compound 7 displayed potent cytotoxicity, with an IC50 range of 1.1–1.6 μM , and inhibited tubulin polymerization with an IC50 value (0.15 μM ) lower than that of combretastatin A‐4 (1.16 μM ). Docking studies reveal that compounds 7 and 11 bind with αAsn101, βThr179, and βCys241 in the colchicine binding site of tubulin.  相似文献   

16.
Sirtuins, NAD+‐dependent histone deacetylases (HDACs), have recently emerged as potential therapeutic targets for the treatment of a variety of diseases. The discovery of potent and isoform‐selective inhibitors of this enzyme family should provide chemical tools to help determine the roles of these targets and validate their therapeutic value. Herein, we report the discovery of a novel class of highly selective SIRT2 inhibitors, identified by pharmacophore screening. We report the identification and validation of 3‐((2‐methoxynaphthalen‐1‐yl)methyl)‐7‐((pyridin‐3‐ylmethyl)amino)‐5,6,7,8‐tetrahydrobenzo[4,5]thieno[2,3‐d]pyrimidin‐4(3H)‐one (ICL‐SIRT078), a substrate‐competitive SIRT2 inhibitor with a Ki value of 0.62±0.15 μM and more than 50‐fold selectivity against SIRT1, 3 and 5. Treatment of MCF‐7 breast cancer cells with ICL‐SIRT078 results in hyperacetylation of α‐tubulin, an established SIRT2 biomarker, at doses comparable with the biochemical IC50 data, while suppressing MCF‐7 proliferation at higher concentrations. In concordance with the recent reports that suggest SIRT2 inhibition is a potential strategy for the treatment of Parkinson’s disease, we find that compound ICL‐SIRT078 has a significant neuroprotective effect in a lactacystin‐induced model of Parkinsonian neuronal cell death in the N27 cell line. These results encourage further investigation into the effects of ICL‐SIRT078, or an optimised derivative thereof, as a candidate neuroprotective agent in in vivo models of Parkinson’s disease.  相似文献   

17.
The structure‐based design, synthesis, biological evaluation, and X‐ray structural studies of fluorine‐containing HIV‐1 protease inhibitors are described. The synthesis of both enantiomers of the gem‐difluoro‐bis‐THF ligands was carried out in a stereoselective manner using a Reformatskii–Claisen reaction as the key step. Optically active ligands were converted into protease inhibitors. Two of these inhibitors, (3R,3aS,6aS)‐4,4‐difluorohexahydrofuro[2,3‐b]furan‐3‐yl(2S,3R)‐3‐hydroxy‐4‐((N‐isobutyl‐4‐methoxyphenyl)sulfonamido)‐1‐phenylbutan‐2‐yl) carbamate ( 3 ) and (3R,3aS,6aS)‐4,4‐difluorohexahydrofuro[2,3‐b]furan‐3‐yl(2S,3R)‐3‐hydroxy‐4‐((N‐isobutyl‐4‐aminophenyl)sulfonamido)phenylbutan‐2‐yl) carbamate ( 4 ), exhibited HIV‐1 protease inhibitory Ki values in the picomolar range. Both 3 and 4 showed very potent antiviral activity, with respective EC50 values of 0.8 and 3.1 nM against the laboratory strain HIV‐1LAI. The two inhibitors exhibited better lipophilicity profiles than darunavir, and also showed much improved blood–brain barrier permeability in an in vitro model. A high‐resolution X‐ray structure of inhibitor 4 in complex with HIV‐1 protease was determined, revealing that the fluorinated ligand makes extensive interactions with the S2 subsite of HIV‐1 protease, including hydrogen bonding interactions with the protease backbone atoms. Moreover, both fluorine atoms on the bis‐THF ligand formed strong interactions with the flap Gly 48 carbonyl oxygen atom.  相似文献   

18.
In this study the rational design, synthesis, and anticancer activity of quinoline‐derived trifluoromethyl alcohols were evaluated. Members of this novel class of trifluoromethyl alcohols were identified as potent growth inhibitors in a zebrafish embryo model. Synthesis of these compounds was carried out with an sp3‐C?H functionalization strategy of methyl quinolines with trifluoromethyl ketones. A zebrafish embryo model was also used to explore the toxicity of ethyl 4,4,4‐trifluoro‐3‐hydroxy‐3‐(quinolin‐2‐ylmethyl)butanoate ( 1 ), 2‐benzyl‐1,1,1‐trifluoro‐3‐(quinolin‐2‐yl)propan‐2‐ol ( 2 ), and trifluoro‐3‐(isoquinolin‐1‐yl)‐2‐(thiophen‐2‐yl)propan‐2‐ol ( 3 ). Compounds 2 and 3 were found to be more toxic than compound 1 ; apoptotic staining assays indicated that compound 3 causes increased cell death. In vitro cell proliferation assays showed that compound 2 , with an LC50 value of 14.14 μm , has more potent anticancer activity than cisplatin. This novel class of inhibitors provides a new direction in the discovery of effective anticancer agents.  相似文献   

19.
Classical drug design and development rely mostly on affinity‐ or potency‐driven structure–activity relationships (SAR). Thus far, a given compound’s binding kinetics have been largely ignored, the importance of which is now being increasingly recognized. In the present study, we performed an extensive structure–kinetics relationship (SKR) study in addition to a traditional SAR analysis at the adenosine A2A receptor (A2AR). The ensemble of 24 A2AR compounds, all triazolotriazine derivatives resembling the prototypic antagonist ZM241385 (4‐(2‐((7‐amino‐2‐(furan‐2‐yl)‐[1,2,4]triazolo[1,5‐a][1,3,5]triazin‐5‐yl)amino)ethyl)phenol), displayed only minor differences in affinity, although they varied substantially in their dissociation rates from the receptor. We believe that such a combination of SKR and SAR analyses, as we have done with the A2AR, will have general importance for the superfamily of G protein‐coupled receptors, as it can serve as a new strategy to tailor the interaction between ligand and receptor.  相似文献   

20.
Over the last decade, functional selectivity (or ligand bias) has evolved from being a peculiar phenomenon to being recognized as an essential feature of synthetic ligands that target G protein‐coupled receptors (GPCRs). The CXC chemokine receptor 3 (CXCR3) is an outstanding platform to study various aspects of biased signaling, because nature itself uses functional selectivity to manipulate receptor signaling. At the same time, CXCR3 is an attractive therapeutic target in the treatment of autoimmune diseases and cancer. Herein we report the discovery of an 8‐azaquinazolinone derivative (N‐{1‐[3‐(4‐ethoxyphenyl)‐4‐oxo‐3,4‐dihydropyrido[2,3‐d]pyrimidin‐2‐yl]ethyl}‐4‐(4‐fluorobutoxy)‐N‐[(1‐methylpiperidin‐4‐yl)methyl]butanamide, 1 b ) that can inhibit CXC chemokine 11 (CXCL11)‐dependent G protein activation over β‐arrestin recruitment with 187‐fold selectivity. This compound also demonstrates probe‐dependent activity, that is, it inhibits CXCL11‐ over CXCL10‐mediated G protein activation with 12‐fold selectivity. Together with a previously reported biased negative allosteric modulator from our group, the present study provides additional information on the molecular requirements for allosteric modulation of CXCR3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号