首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A facile and efficient protocol for the preparation of nanofibers incorporating polymeric ketoprofen prodrugs and polyvinylpyrrolidone was developed. Polymeric ketoprofen prodrugs were constructed by a two‐step chemo‐enzymatic synthetic route, and nanofibers prepared by electrospinning from dimethylformamide/ethanol (1 : 1, v/v) solutions. The morphological characteristics of the fibers were influenced by the concentration of active agent in the spinning solution; average diameters varied from 196 to 370 nm. In vitro release studies indicated that the ketoprofen release rate from the electrospun fibers was significantly higher than that from the pure polymeric prodrugs. Cumulative drug release from the electrospun fibers reached 40–70% after 3 h and 75–100% after 12 h, while the pure polymeric prodrug released only 7–9% of the active agent over 12 h. Functional nanofibers incorporating polymeric prodrugs therefore comprise potentially effective drug delivery systems for sustained release. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1570–1577, 2013  相似文献   

2.
Ursodeoxycholic acid (UDCA) is a bile acid with demonstrated anti‐apoptotic activity in both in vitro and in vivo models. However, its utility is hampered by limited aqueous solubility. As such, water‐soluble prodrugs of UDCA could have an advantage over the parent bile acid in indications where intravenous administration might be preferable, such as decreasing damage from stroke or acute kidney injury. Five phosphate prodrugs were synthesized, including one incorporating a novel phosphoryloxymethyl carboxylate (POMC) moiety. These prodrugs were highly water‐soluble, but showed significant differences in chemical stability, with oxymethylphosphate prodrugs being the most unstable. In a series of NMR experiments, the POMC prodrug was bioactivated to UDCA by alkaline phosphatase (AP) faster than a prodrug containing a phosphate directly attached to the alcohol at the 3‐position of UDCA. Both of these prodrugs showed significant anti‐apoptotic activity in a series of in vitro assays, although the POMC prodrug required the addition of AP for activity, while the other compound was active without exogenous AP.  相似文献   

3.
Conventional chemotherapy (CT) is associated with severe side effects and inducible resistance, making it difficult to meet clinical requirements, forcing the development of new multifunctional prodrugs for precision medicine. In recent decades, researchers and clinicians have focused on developing of multifunctional chemotherapeutic prodrugs with tumor-targeting capability, activatable and traceable chemotherapeutic activity, as a powerful tool to improve theranostic outcomes in cancer treatment. The conjugates of near-infrared (NIR) organic fluorophores and chemotherapy reagents create an exciting avenue for real-time monitoring of drug delivery and distribution, as well as the combination of chemotherapy and photodynamic therapy (PDT). Therefore, there are great opportunities for researchers to conceive and exploit multifunctional prodrugs that can visualize chemo-drugs release and tumor treatment in vivo. In this review, the design strategy and the recent progress of multifunctional organic chemotherapeutic prodrugs for activating NIR fluorescence imaging-guided therapy are described and discussed in detail. Finally, the prospects and challenges of multifunctional chemotherapeutic prodrugs for NIR fluorescence imaging-guided therapy are provided.  相似文献   

4.
Pentamidine is an effective antimicrobial agent that is approved for the treatment of African trypanosomiasis but suffers from poor oral bioavailability and central nervous system (CNS) penetration. This work deals with the development and systematic characterisation of new prodrugs of pentamidine. For this reason, numerous prodrugs that use different prodrug principles were synthesised and examined in vitro and in vivo. Another objective of the study was the determination of permeability of the different pentamidine prodrugs. While some of the prodrug principles applied in this study are known, such as the conversion of the amidine functions into amidoximes or the O-alkylation of amidoximes with a carboxymethyl residue, others were developed more recently and are described here for the first time. These newly developed methods aim to increase the affinity of the prodrug for the transporters and mediate an active uptake via carrier systems by conjugation of amidoximes with compounds that improve the overall solubility of the prodrug. The different principles chosen resulted in several pentamidine prodrugs with various advantages. The objective of this investigation was the systematic characterisation and evaluation of eight pentamidine prodrugs in order to identify the most appropriate strategy to improve the properties of the parent drug. For this reason, all prodrugs were examined with respect to their solubility, stability, enzymatic activation, distribution, CNS delivery, and oral bioavailability. The results of this work have allowed reliable conclusions to be drawn regarding the best prodrug principle for the antiprotozoal drug pentamidine.  相似文献   

5.
A pH‐ and temperature‐responsive semi‐interpenetrating copolymer PEG6000/poly(NIPA‐co‐AMPS) (PEG/AMPS‐co‐NIPA SIPN), for short PEG SIPN, was made by ammonium persulfate‐initiated suspension copolymerization of N‐isopropylacrylamide, 2‐acrylamido‐2‐methylpropanesulphonic acid, and N,N′‐methylene‐bis‐acrylamide (MBAA; crosslinker) in the presence of PEG6000. The PEG SIPN copolymer matrices containing nanostructures made in the high‐temperature copolymerization resulted in channels for PEG and facile migration of drugs. In drug encapsulation or drug‐loading process, one can easily ignore or pay less attention to the interaction between a drug and its encapsulation materials; however, the ignored interactions may induce problems in drug properties or the release behavior in use. Sodium diclofenac (DFNa) precipitates as the carboxylic acid form in an acidic environment, and it is challenging to encapsulate sodium diclofenac in such an acidic matrix without precipitation of the sparingly soluble acid form of DFNa on the surface of the polymer substrate. To avoid bulky precipitation in drug loading, an in situ loading technique was developed for producing gel spheres with DFNa uniformly distributed in the polymer matrix. The technique is based on fast polymerization of spherical droplets of a pregel solution in which the drug is dissolved. Diffusion‐loading prodrugs were made in comparison with in situ loading prodrugs in thermal, release kinetics, and release behavior. Drug release profiles (in pH 7.4 phosphate buffer) show that the new drug loading technique gives controlled release during a period of about 7 days at 37°C. By contrast, gel spheres loaded with sodium diclofenac using the conventional diffusion technique produced almost total release of the drug within about 24 h. The thermal stability of sodium diclofenac, the PEG/AMPS‐co‐NIPA SIPN, and the prodrugs made with the SIPN and sodium diclofenac was studied. A near zero‐order release kinetics was found in the in vitro release of sodium diclofenac with in situ loading PEG SIPN prodrug. We have, for the first time, studied sodium diclofenac release behavior from the PEG SIPN hydrogel systems. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
In recent years, anticancer nanomedicines have mainly been developed for chemotherapy and combination therapy in which the main contributing anticancer drugs are delivered by deliberately designed nano drug delivery systems (nano‐DDSs). Inorganic nanocarriers equipped with fluorescent tracers have become attractive tools to monitor the whole drug delivery and release processes. The fluorescence signal of tracers could be observed concomitantly with drug release, and thus, this strategy is of great benefit to evaluate the therapeutic effects of the nano‐DDSs. This review provides a brief overview about three inorganic nanocarriers for drug delivery, including mesoporous silica, Fe3O4, and hydroxyapatite. We mainly discussed about their preparation processes, drug loading capacities, and the development of different fluorescent materials (fluorescent dyes, quantum dots, fluorescent macromolecules, and rare earth metals) hybridized to nanocarriers for real‐time monitoring of drug release both in vitro and in vivo. This review also provides some recommendations for more in‐depth research in future. © 2017 American Institute of Chemical Engineers AIChE J, 64: 835–859, 2018  相似文献   

7.
Monitoring the release and activation of prodrug formulations provides essential information about the outcome of a therapy. While the prodrug delivery can be confirmed by using different imaging techniques, confirming the release of active payload by using imaging is a challenge. Here, we have discovered that the switchable fluorescence of doxorubicin can validate drug release upon its uncaging reaction with a highly specific chemical partner. We have observed that the conjugation of doxorubicin with a trans-cyclooctene (TCO) diminishes its fluorescence at 595 nm. This quenched fluorescence of the doxorubicin prodrug is recovered upon its bond-cleaving reaction with tetrazine. Clinically assessed iron oxide nanoparticles were used to formulate a doxorubicin nanodrug. The release of doxorubicin from the nanodrug was studied under various experimental conditions. A fivefold increase in doxorubicin fluorescence is observed after complete release. The studies were carried out in vitro in MDA-MB-231 breast cancer cells. An increase in Dox signal was observed upon tetrazine administration. This switchable fluorescence mechanism of Dox could be employed for fundamental studies, that is, the reactivity of various tetrazine and TCO linker types under different experimental conditions. In addition, the system could be instrumental for translational research where the release and activation of doxorubicin prodrug payloads can be monitored by using optical imaging systems.  相似文献   

8.
In this study, a novel polymeric prodrug based on norbornene-functional polylactide with functionalized paclitaxels (LEV-PTXL) covalently conjugated to water-soluble polymer carrier via a pH-sensitive hydrazone bond was developed. A series of water-soluble PTXL prodrugs with decent drug contents of 17.3 and 24.7 wt% (denoted as PTXL prodrugs 1 and 2) were prepared. The molecular structures and characteristics were confirmed by 1H NMR, Fourier transform infrared, and gel permeation chromatography. In vitro release studies showed that PTXL release rate from polymeric prodrug were significantly accelerated under acidic medium, due to the acid-cleavable hydrazone linkage. As illustrated by cytotoxicity study, while the corresponding polymer carrier was nontoxic, the polymeric prodrug exhibited higher therapeutic efficacy toward MCF-7 and A549 (IC50 = 0.19 and 4.94 µg PTXL equiv/mL, respectively) cancer cells. The norbornene-functional polylactide-based polymeric prodrug has appeared as a novel anticancer nanomedicine for cancer therapy.  相似文献   

9.
A chemo-anti-inflammatory strategy is of interest for the treatment of aggressive cancers. The platinum (IV) prodrug with non-steroidal anti-inflammatory drugs (NSAIDs) as axial ligands is designed to efficiently enter tumor cells due to high lipophilicity and release the cytotoxic metabolite and NSAID intracellularly, thereby reducing side effects and increasing the therapeutic efficacy of platinum chemotherapy. Over the last 7 years, a number of publications have been devoted to the design of such Pt(IV) prodrugs in combination with anti-inflammatory chemotherapy, with high therapeutic efficacy in vitro and In vivo. In this review, we summarize the studies devoted to the development of Pt(IV) prodrugs with NSAIDs as axial ligands, the study of the mechanism of their cytotoxic action and anti-inflammatory activity, the structure–activity ratio, and therapeutic efficacy.  相似文献   

10.
Small‐molecule drugs often have limited solubility, display rapid clearance or poor selectivity that leads to undesired side‐effects. Although prodrug strategies can improve solubility and lower toxicity, activation ‘on demand’ as well as targeted transport of prodrugs remains a challenge in drug delivery. Responsive polymeric nanoparticles can help meet these challenges with the encapsulation or conjugation of drugs, allowing release at the target site upon triggering by an internal or external stimulus. The adaptable design of polymeric nanoparticles allows them to play a vital role in achieving a specific and desired response following application of a specific stimulus. Here, the most recent progress in responsive polymeric nanoparticles is reviewed with a focus on the chemical properties of the utilized polymers. © 2017 Society of Chemical Industry  相似文献   

11.
Developing new antiretroviral therapies for HIV‐1 infection with potential for less frequent dosing represents an important goal within drug discovery. Herein, we present the discovery of ethyl (1‐((4‐((4‐fluorobenzyl)carbamoyl)‐1‐methyl‐2‐(2‐(5‐methyl‐ 1,3,4‐oxadiazole‐2‐carboxamido)propan‐2‐yl)‐6‐oxo‐1,6‐dihydropyrimidin‐5‐yl)oxy)ethyl) carbonate (MK‐8970), a highly optimized prodrug of raltegravir (Isentress). Raltegravir is a small molecule HIV integrase strand‐transfer inhibitor approved for the treatment of HIV infection with twice‐daily administration. Two classes of prodrugs were designed to have enhanced colonic absorption, and derivatives were evaluated in pharmacokinetic studies, both in vitro and in vivo in different species, ultimately leading to the identification of MK‐8970 as a suitable candidate for development as an HIV therapeutic with the potential to require less frequent administration while maintaining the favorable efficacy, tolerability, and minimal drug–drug interaction profile of raltegravir.  相似文献   

12.
Because of the potential application of prodrugs of nonsteroidal anti‐inflammatory drugs (NSAIDs), Candida antarctica lipase B (CAL‐B) catalyzed polycondensation of profen‐containing diol monomers and diesters were designed to prepare a series of biodegradable polymeric prodrugs composed of NSAID branches and poly(amide‐co‐ester) backbone. The structure of the products was confirmed by Fourier transform infrared spectroscopy, NMR, and gel permeation chromatography (GPC). The reaction conditions of polymerization, such as the enzyme source, amount of catalyst, and temperature, were optimized. The molecular weights of resultant copolymers were 2170–13,270 g/mol, with corresponding polydispersities from 1.17 to 2.4. The copolymers had relatively high drug loadings of 44.7–59.7 wt % because every repeat unit contained one drug molecule. The strategy of enzymatic polymerization appeared to be quite general and accommodated a large number of comonomer substrates with various chain lengths and substituents. The optically pure (R)‐naproxen monomer was demonstratively incorporated into the corresponding copolymers with the developed synthesis strategy. The in vitro study showed that the polyester could release the drug effectively under physiological conditions with enzyme, which indicated that the obtained product could be a promising prodrug for extending pharmacological effects by delayed drug release. With GPC analysis, we confirmed that the prodrug was completely degradable in aqueous solution. The attractive features of the copolymer were its high drug loading, biodegradability, and biocompatibility. The high tolerance of the CAL‐B toward drug groups, as described in this article, provides a new route for synthesizing polymeric drugs with potential biomedical applications in mild conditions and for reducing environmental impact. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
We demonstrate that oral delivery of self-assembled nanostructured nanoparticles consisting of 5-fluorouracil (5-FU) lipid prodrugs results in a highly effective, target-activated, chemotherapeutic agent, and offers significantly enhanced efficacy over a commercially available alternative that does not self-assemble. The lipid prodrug nanoparticles have been found to significantly slow the growth of a highly aggressive mouse 4T1 breast tumour, and essentially halt the growth of a human MDA-MB-231 breast tumour in mouse xenografts. Systemic toxicity is avoided as prodrug activation requires a three-step, enzymatic conversion to 5-FU, with the third step occurring preferentially at the tumour site. Additionally, differences in the lipid prodrug chemical structure and internal nanostructure of the nanoparticle dictate the enzymatic conversion rate and can be used to control sustained release profiles. Thus, we have developed novel oral nanomedicines that combine sustained release properties with target-selective activation.  相似文献   

14.
The aim of the research presented was to develop a potential liver‐targeting prolonged‐circulation polymeric prodrug of doxorubicin (Dox) with a pH‐triggered drug release profile. In particular, linear dendritic block copolymers composed of polyamidoamine dendrimer (PAMAM) and poly(ethylene glycol) (PEG; number‐average molecular weight of 2000 g mol?1) with or without galactose (Gal) were synthesized. Dox was coupled to the copolymers via an acid‐labile hydrazone linker. These prodrugs, designated Gal‐PEG‐b‐PAMAM‐Doxn and mPEG‐b‐PAMAM‐Doxm, showed accelerated Dox release as the pH decreased from 8.0 to 5.6. Cytotoxicity of the prodrugs was lower than that of free Dox due to the gradual drug release nature. Compared to mPEG‐b‐PAMAM‐Doxm, Gal‐PEG‐b‐PAMAM‐Doxn showed rather high cytotoxicity against Bel‐7402, suggestive of its galactose receptor‐mediated enhanced tumor uptake. This galactose receptor‐mediated liver‐targeted profile was further confirmed by the prolonged retention time in hepatoma tissue monitored using magnetic resonance imaging. Gal‐PEG‐b‐PAMAM‐Doxn showed better in vivo antitumor efficacy than free Dox, suggesting its great potential as a polymeric antitumor prodrug. Copyright © 2010 Society of Chemical Industry  相似文献   

15.
Nitrogen‐containing bisphosphonates have antitumor activity in certain breast cancer and myeloma patients. However, these drugs have limited oral absorption, tumor cell entry and activity, and cause bone side effects. The potencies of phosphorylated antiviral drugs have been increased by administering them as prodrugs, in which the negative charges on the phosphate moieties are masked to make them lipophilic. We synthesized heterocyclic bisphosphonate (BP) prodrugs in which the phosphonate moieties are derivatized with pivaloyloxymethyl (pivoxil) groups and that lack the hydroxy “bone hook” on the geminal carbon. When the lipophilic BP prodrugs enter tumor cells, they are converted into their active forms by intracellular esterases. The most active BP prodrug, tetrakispivaloyloxymethyl 2‐(thiazole‐2‐ylamino)ethylidene‐1,1‐bisphosphonate ( 7 ), was found to potently inhibit the in vitro growth of a variety of tumor cell lines, especially hematopoietic cells, at nanomolar concentrations. Consistent with this fact, compound 7 inhibited the prenylation of the RAP1A small GTPase signaling protein at concentrations as low as 1–10 nm . In preclinical studies, 7 slowed the growth of human bladder cancer cells in an immunodeficient mouse model. Thus, 7 is significantly more active than zoledronic acid, the most active FDA‐approved BP, and a potential anticancer therapeutic.  相似文献   

16.
Protein expression and localization are often studied in vivo by tagging molecules with green fluorescent protein (GFP), yet subtle changes in protein levels are not easily detected. To develop a sensitive in vivo method to amplify fluorescence signals and allow cell‐specific quantification of protein abundance changes, we sought to apply an enzyme‐activated cellular fluorescence system in vivo by delivering ester‐masked fluorophores to Caenorhabditis elegans neurons expressing porcine liver esterase (PLE). To aid uptake into sensory neuron membranes, we synthesized two novel fluorogenic hydrolase substrates with long hydrocarbon tails. Recombinant PLE activated these fluorophores in vitro. In vivo activation occurred in sensory neurons, along with potent activation in intestinal lysosomes quantifiable by imaging and microplate and partially attributable to gut esterase 1 (GES‐1) activity. These data demonstrate the promise of biorthogonal hydrolases and their fluorogenic substrates as in vivo neuronal imaging tools and for characterizing endogenous C. elegans hydrolase substrate specificities.  相似文献   

17.
A highly-efficient nano-medical carrier system was constructed for drug release based on a facile synthesis, excellent fluorescence, and structure of phenol formaldehyde resin (PFR). The PFR was easily synthesized through a simple one-step hydrothermal reaction, reduction and etching process, and a silane coupling agent modification process. The multiple functionalized drug delivery system, defined as PFR-NH2@DOX was constructed by loading Adriamycin (DOX) into PFR. Drug release results in vitro displayed a DOX content of 145 mg g−1 prodrug nanosphere has excellent pH-triggered drug release (about 84.71%) within 72 h at pH 5 solution. The fluorescence recovery of PFR after DOX release indicates the potential application in fluorescence imaging and controlled drug release.  相似文献   

18.
The majority of clinically approved anticancer drugs are characterized by a narrow therapeutic window that results mainly from a high systemic toxicity of the drugs in combination with an evident lack of tumor selectivity. Besides the development of suitable galenic formulations such as liposomes or micelles, several promising prodrug approaches have been followed in the last decades with the aim of improving chemotherapy. In this review we elucidate the two main concepts that underlie the design of most anticancer prodrugs: drug targeting and controlled release of the drug at the tumor site. Consequently, active and passive targeting using tumor-specific ligands or macromolecular carriers are discussed as well as release strategies that are based on tumor-specific characteristics such as low pH or the expression of tumor-associated enzymes. Furthermore, other strategies such as ADEPT (antibody-directed enzyme prodrug therapy) and the design of self-eliminating structures are introduced. Chemical realization of prodrug approaches is illustrated by drug candidates that have or may have clinical importance.  相似文献   

19.
采用异氰酸-α-氯乙酰酯与不同相对分子质量的聚乙二醇反应得到双氯乙酰氨基甲酸聚乙二醇酯,由于端基的α-氯具有良好的反应活性,将它与抗肿瘤药物5-氟尿嘧啶结合制备不同相对分子质量的高分子前药。对产物进行红外、核磁、紫外表征,证明5-氟尿嘧啶已经成功接到聚乙二醇链的末端,由紫外分光光度法测得最大载药量为22.6%。与5-氟尿嘧啶相比,前药的水溶性得到增强,而且具有长效缓释的功能。前药在不同pH的缓冲液中可以释放5-氟尿嘧啶或其衍生物,当聚乙二醇相对分子质量为2000时水解速度最快,20h的最大释药率为71.5%。  相似文献   

20.
Novel phospholipid (PL)-cyclosporine conjugates were prepared and studied as potential prodrugs for inflammatory bowel disease (IBD). Our approach relies on phospholipase A2 (PLA2), which is overexpressed in the inflamed intestinal tissues, as the prodrug activator to potentially release cyclosporine at the site of inflammation. PL-cyclosporine prodrug conjugates with methylene linkers of various lengths between the sn-2 position of the PL and cyclosporine were synthesized and evaluated for in vitro activation. Surprisingly, despite previous work indicating that conjugates with six methylene linkers between the lipid and drug would suffer rapid enzymatic hydrolysis, with cyclosporine this was not observed. However, compounds with longer linkers (n=10, 12 methylene units) display complete release of the drug by PLA2-catalyzed hydrolysis, thus demonstrating the importance and profound impact of structural fine-tuning. This study represents a proof-of-concept for our hypothesis and a first step towards a truly targeted IBD treatment with cyclosporine that could be administered throughout the GI tract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号