共查询到17条相似文献,搜索用时 46 毫秒
1.
基于贝叶斯网络分类器的变压器综合故障诊断方法 总被引:8,自引:0,他引:8
鉴于电力变压器故障诊断中的信息和知识具有随机性和不确定性的特点,利用贝叶斯网络表达知识灵活、分析处理不确定性与关联性问题能力强的优点,本文提出了一种基于贝叶斯网络分类器的以溶解气体分析为主结合其他电气试验结果的变压器综合故障诊断方法,并建立了变压器朴素贝叶斯网络故障诊断模型和TAN故障诊断模型.文中详细阐述并验证了该方法解决信息不完备问题的优越性.该模型还可以通过不断积累完善训练样本,自动修正网络结构参数和概率分布参数,提高诊断效果.实例验证表明了该方法的有效性. 相似文献
2.
贝叶斯分类器与粗糙集相结合的变压器综合故障诊断 总被引:28,自引:6,他引:28
由于电力变压器故障诊断中的测试数据信息不完备、有偏差,且贝叶斯网络处理不确定性问题能力强,文中提出了用于变压器故障诊断的NB、TAN和BAN三种贝叶斯分类器模型,并提出了贝叶斯网络分类器与粗糙集相结合的变压器故障诊断的新方法,它综合使用溶解气体分析结果和其它电气试验结果作为故障分类所需的属性。其相应的混合分类器为NB粗集、TAN粗集和BAN粗集分类器。实验表明提出的三种混合分类器都适于变压器故障诊断,具有处理信息缺失多的能力和容错特性,克服了粗糙集刚性推理的弱点,其性能明显优于单独使用贝叶斯网络分类器或粗糙集的方法。 相似文献
3.
4.
针对传统变压器故障诊断的不足,构建基于朴素贝叶斯分类的变压器故障诊断模型,合理选择分类器的属性变量和决策变量,并按阈值进行数据离散化.基于现场实际数据的实验证明,该模型能有效地诊断变压器的故障类型,诊断准确率高,并克服了三比值方法中编码缺失、对正常数据无法诊断等缺陷. 相似文献
5.
在基于油色谱数据的变压器故障诊断中,一般数据挖掘方法存在数值区域划分过硬,且未考虑边界元素隶属的随机性和模糊性的问题。针对该问题,文章应用正态云模型对油色谱数据集进行预处理,同时云模型对数据集的精简也提高了关联规则挖掘的效率。为了解决朴素贝叶斯分类器中对各属性独立的假设不符合实际情况这一问题,文章引入关联规则森林表示法和属性联合概率算法,改进了朴素贝叶斯分类器,建立了基于正态云模型与改进贝叶斯分类器的变压器故障诊断模型,通过与其他模型的对比及实例验证,证明了该方法的有效性。 相似文献
6.
基于组合贝叶斯网络的电力变压器故障诊断 总被引:2,自引:4,他引:2
针对电力变压器故障诊断中的信息和知识具有随机性和不确定性的特点,提出了一种利用AdaBoostM1算法构建组合贝叶斯网络进行变压器故障诊断的方法.AdaBoostM1算法能够提高分类器的性能,为此,将若干个不同结构的TAN看作一系列基分类器,进行boosting迭代.即依次在训练集上训练每个基分类器.第1个基分类器用原始的训练集训练,其他基分类器的训练决定于在其之前产生的分类器的表现,被已有分类器错误判断的实例将以较大的概率出现在新分类器的训练集中,最后,这些分类器组合成为一个贝叶斯网络组合分类器.由于贝叶斯网络是用来表示变量间连接概率的图形模式,它提供了一种自然的表示因果信息的方法,用来发现数据间的潜在信息,因此应用中显示了该方法对于变压器故障诊断的适用性.在讨论变压器故障空间的基础上,针对已积累的故障变压器的大量油中溶解气体等数据,利用boosting迭代,并在此基础上构造出组合贝叶斯网络诊断模型,实现了变压器故障诊断,有利于提高诊断的准确性.此外,通过与其他组合诊断的方法进行比较进一步表明了该模型的有效性. 相似文献
7.
8.
基于线性分类器的充油变压器潜伏性故障诊断方法 总被引:12,自引:8,他引:12
油中溶解气体分析(DGA)是判别变压器内部绝缘状况及发现内部潜伏性故障的重要手段。文中介绍了一种基于线性分类器、以DGA数据为特征参数的充油变压器潜伏性故障的识别方法。运用该方法进行了大量的应用实例分析,并将识别结果与BP神经网络法以及IEC三比值法进行了对比。结果表明选用H2、CH4、C2H2、CEH4、C2H6、CO、CO4七种特征气体作为特征参数时,该方法显示出较高的准确度。 相似文献
9.
10.
基于高斯过程分类器的变压器故障诊断 总被引:6,自引:0,他引:6
构建了基于拉普拉斯近似方法的高斯过程分类器(LGPC)。LGPC可自行优化超参数,以概率形式输出分类结果,便于问题的不确定性分析,从而克服SVM规则化系数、核函数参数确定困难等局限。在用典型分类数据验证LGPC在分类性能方面优于SVM的基础上,提出了基于LGPC的变压器故障诊断方法,并给出了其具体实现方法。通过工程实例验证了均值函数采用常函数、协方差函数采用全平方指数函数、似然函数采用误差函数时,故障诊断的正确率较高。同基于SVM的故障诊断方法相比,本文所提方法可以取得更高的故障诊断正确率,具有可行性和推广性。 相似文献
11.
12.
基于BP神经网络的变压器故障诊断 总被引:3,自引:0,他引:3
针对变压器故障诊断的特点,提出了一种基于BP神经网络的电力变压器故障诊断方法。采用稳定、快速的Levenberg-Marquardt算法训练多层前向人工神经网络,克服了标准BP算法收敛速度慢、易陷入局部极小的缺陷;在隐含层节点数的选取上,采用简单实用的黄金分割优选法,可以节省成本,提高搜索效率。仿真结果表明,该方法具有运算速度快和拟合精度高等优点,满足电力变压器故障诊断的要求。 相似文献
13.
基于粗糙集与模糊神经网络的变压器故障诊断方法 总被引:7,自引:4,他引:7
将基于粗糙集理论的模糊神经网络,应用于变压器故障诊断中,充分利用粗糙集理论对知识的约简能力模糊神经网络优良的分类能力,首先利用粗糙集方法对原始数据进行约简,形成精简的规则集,以此基础构建的模糊神经网络结构完全是由粗糙集最终约简规则决定的,具有良好的拓扑结构,网络规模大大减少,学习速度大为提高,而且保持了网络较好的分类能力。 相似文献
14.
针对电力变压器故障的特点以及传统故障诊断方法在变压器诊断应用中的局限性,研究一种基于BP神经网络算法的变压器故障诊断方法.通过选择足够的故障样本训练神经网络,达到变压器故障诊断的要求,并通过实例证明本算法的有效性. 相似文献
15.
为了提高水中兵器智能化故障诊断水平,实现诊断知识的可互换性和可移植性,设计了一种基于AI-ESTATE贝叶斯故障诊断的软件架构。简要分析了全测试环境人工智能交换与服务(AI-ESTATE)标准及其体系结构,并结合最新的贝叶斯网络技术,提出了相关实体的诊断模型标准化信息模型。最后在AI-ESTATE的架构概念和诊断系统的层次框架结构的基础上,设计了一种基于AI-ESTATE贝叶斯故障诊断技术的软件架构,同时给出了其实验验证的软件流程图。该软件架构的设计能够为电子装备故障诊断系统的软件开发提供一种新的解决方案。 相似文献
16.
17.
电力变压器的智能故障诊断研究 总被引:3,自引:0,他引:3
将基于改进遗传算法(IGA)和误差反向传播(BP)算法相结合构成的IGA-BP混合算法用于训练神经网络。该混合算法有效克服常规BP和传统GA算法独立训练神经网络的缺陷,并应用于电力变压器溶解气体分析的智能故障诊断。实验诊断结果表明,IGA-BP混合算法的收敛速度快于BP及GA算法,并且具有较高的诊断准确率。 相似文献