首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Prolonged alcohol (ethanol) consumption leads to the development of alcohol tolerance and cross-tolerance to some benzodiazepines and barbiturates. In contrast, rats undergoing alcohol withdrawal are sensitized to the anticonvulsant effects of the endogenous GABA(A) receptor modulator, 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-THP). Alterations in endogenous, cerebral cortical levels of 3alpha,5alpha-THP during alcohol withdrawal could contribute to the observed sensitization to 3alpha,5alpha-THP. Therefore, this study investigated plasma and brain levels of 3alpha,5alpha-THP, progesterone, and corticosterone during alcohol dependence and withdrawal in the rat. Plasma corticosterone, progesterone (a precursor of 3alpha,5alpha-THP) and 3alpha,5alpha-THP levels were unchanged in alcohol-dependent animals. Cerebral cortical levels of 3alpha,5alpha-THP decreased in dependent male animals, but not in dependent female rats. During alcohol withdrawal, plasma corticosterone and progesterone levels increased in male, but not female rats. However, neither plasma nor cerebral cortical 3alpha,5alpha-THP levels were altered from control levels in male or female rats during alcohol withdrawal. Plasma and brain levels of 3alpha,5alpha-THP were markedly higher in female compared with male rats. Cerebral cortical levels of 3alpha,5alpha-THP during the diestrus phase of the estrus cycle were approximately 4 to 6 ng/g, a concentration that may approach physiological relevance. These findings suggest that sensitization to 3alpha,5alpha-THP during alcohol withdrawal is not mediated by elevations in brain levels of endogenous 3alpha,5alpha-THP in male or female rats. However, elevations in circulating corticosterone and progesterone levels during ethanol withdrawal in male rats may underlie gender differences in allopregnanolone sensitivity during ethanol withdrawal.  相似文献   

2.
The progesterone derivative 3 alpha-hydroxy-5 alpha-pregnan-20 one (allopregnanolone/AP) and the deoxycorticosterone derivative 3 alpha-21-dihydroxy-5 alpha- pregnan-20 one (allotetra-hydrodeoxycorticosterone/THDOC) are endogenous neuroactive steroids endowed with neuromodulatory actions in the central nervous system. Their best-characterized membrane-receptor-dependent action consists in the amplification of GABA-gated chloride currents mediated by specific interactions with the GABAA receptor complex, which appears responsible for the pharmacological effects (anxiolytic, anticonvulsant, hypnotic/anaesthetic) of exogenously administered AP and THDOC. Several acute stress paradigms and different negative allosteric modulators (isoniazid and FG 7142) of GABAA receptors time dependently increase brain and plasma concentrations of AP and THDOC only in intact or sham-operated but not in adrenalectomized-orchiectomized rats. These results suggest that acute stress and inhibitors of GABAA receptors increase the brain and plasma neurosteroid concentrations via a reduction of the inhibitory action exerted by GABA on the hypothalamic-pituitary-adrenal axis. The comparison between the time course of the changes in GABAA receptor function and of their behavioral correlates (proconflict behavior) and that of the changes of endogenous neuroactive steroids are consistent with the view that AP and THDOC may play a role in restoring the GABAergic tone to prestress conditions, by limiting the duration and the extent of its stress-induced reduction. The acute stress-elicited increase of AP and THDOC is observed in adult as well as in aged rats, which show a reduced basal GABAergic transmission and a greater response to the effect of stress in terms of their brain cortical neuroactive steroid concentrations than adult rats.  相似文献   

3.
The mature brain is less susceptible to seizures than the immature brain. We demonstrate that in the mature substantia nigra (SN) there are two topographically discrete GABAA-sensitive regions which differ in the amount of mRNA expression of the GABAA receptor alpha 1 subunit. These two regions mediate separate anticonvulsant and proconvulsant effects and use divergent projection networks. By contrast, in the immature SN there is no special topography of mRNA expression of the alpha 1 subunit and only the proconvulsant network is present. The decreased seizure susceptibility of the mature brain may be related to postnatal segregation of GABAA-sensitive networks.  相似文献   

4.
Gamma-aminobutyric acid type A (GABAA) receptors expressed within the medial preoptic area (mPOA) are known to play a critical role in regulating sexual and neuroendocrine functions. In the rat brain, high levels of expression of the gamma1 subunit mRNA of the GABAA receptor are restricted to a limited number of regions that mediate sexual behaviors, including the mPOA. The biophysical and pharmacological profiles of native gamma1-containing receptors in neurons are unknown. Here, we have characterized the properties of GABAA receptor-mediated spontaneous inhibitory postsynaptic currents (sIPSCs) and currents elicited by fast perfusion of GABA to isolated mPOA neurons of juvenile male and female rats. No significant sex-specific differences were evident in the mean peak amplitude, distribution of event amplitudes, kinetics of current decay, or the frequency of sIPSCs. The profile of modulation of sIPSCs by diazepam, beta-CCM and zolpidem, allosteric modulators that act at the benzodiazepine (BZ) site of the GABAA receptor, support the assertion that mPOA neurons of both sexes express functional gamma1-containing receptors. The ability of zolpidem to modulate both sIPSC amplitude and currents elicited by rapid perfusion of GABA to mPOA neurons differed significantly between the sexes. Zolpidem reversibly induced negative modulation of currents in mPOA neurons isolated from male rats, but had no effect in mPOA neurons from female rats. Concentration-response analysis of responses in neurons acutely isolated from male rats indicated an IC50 of 58 nM with maximal decreases of approximately 50% of control peak current amplitude. In situ hybridization analysis demonstrated that levels of the gamma1 subunit mRNA are significantly higher in mPOA neurons from male than female rats. No significant sex-specific differences were detected in the levels of alpha1, alpha2, or alpha5 mRNAs. These results suggest that native gamma1-containing receptors are expressed in primary neurons of the mPOA and that sex-specific differences in the expression of this subunit may contribute to sexual dimorphism in GABAA receptor modulation by compounds acting at the BZ site.  相似文献   

5.
Ethanol enhancement of GABAA receptor function has been found in some, but not all, studies. These results suggest the existence of ethanol-sensitive and -resistant receptors that may differ in subunit composition, although methodological differences (e.g., 36Cl- flux versus membrane currents) could also contribute to the different results. To examine these possibilities, we used mouse L(tk-) cells stably transfected with alpha 1 + beta 1 or alpha 1 + beta 1 + gamma 2L GABAA receptor subunit DNAs and compared 36Cl- flux with whole-cell, patch-clamp measurements of GABAA receptor function. Both techniques detected a similar modulation of the GABA receptor by ethanol, flunitrazepam, and pentobarbital. The potentiating action of ethanol required the gamma-subunit and was maximal at a concentration of 10 mM. Similar ethanol potentiation was obtained with brief (20 msec) or long (2 sec) applications of GABA. Analysis of data obtained from individual cells expressing alpha 1 beta 1-gamma 2L subunits showed considerable variability in sensitivity to ethanol, particularly with concentrations of 30 and 100 mM. Ethanol potentiated GABA action if the cells were grown on coverslips coated with polylysine, but had no effect on GABAA receptors of cells grown on uncoated coverslips. Thus, ethanol action was influenced by the growth matrix. Taken together, these data indicate that a gamma-subunit is necessary, but not sufficient, for ethanol sensitivity in this cell system. We suggest that posttranslational processing, particularly receptor phosphorylation, may also be important and that stably transfected cells will be useful in elucidating these events.  相似文献   

6.
The abundance of gamma-aminobutyric acid receptor type A (GABAA receptor) subunit mRNAs and polypeptides as well as muscimol-stimulated 36Cl- uptake were measured in rat cerebral cortex or hippocampus at various times during pregnancy and after delivery. RNase protection assays revealed that the amount of the gamma2L subunit mRNA decreased progressively during pregnancy, in the cerebral cortex and hippocampus, and then returned to control values around the time of delivery. A similar pattern was observed for the alpha5 subunit mRNA in the cerebral cortex, whereas no significant changes were apparent for alpha1, alpha2, alpha3, alpha4, beta1, beta2, beta3 and gamma2S subunit mRNAs. The amounts of gamma2 and alpha1 proteins in the cerebral cortex were measured by immunoblot analysis; whereas the abundance of gamma2 protein decreased during pregnancy, no change was detected in the amount of alpha1 protein. Evaluation for functional significance of the down-regulated gamma2 and alpha5 subunit was made by determining the GABAA receptor function assessed by measurement of muscimol-stimulated 36Cl- uptake in cerebral cortical membrane vesicles. Muscimol-induced 36Cl- uptake was markedly reduced during of pregnancy compared with rats in oestrus. At this same time, the potentiating effects of diazepam and allopregnanolone on muscimol stimulation of 36Cl- uptake also were reduced. In contrast, the effects of muscimol, allopregnanolone and diazepam were significantly increased, relative to animals in oestrus, after delivery.  相似文献   

7.
Thalamic innervation plays a major role in parcellation of neocortex and maturation of cortical circuits. While the underlying mechanisms are unknown, lesion studies have identified GABAA receptors in neocortex as molecular targets of thalamic regulation [J. Paysan, A. Kossel, J. Bolz, J.M. Fritschy, Area-specific regulation of gamma-aminobutyric acid A receptor subtypes by thalamic afferents in developing rat neocortex, Proc. Natl. Acad. Sci. USA 94 (1997) 6995-7000]. To determine the factors regulating the expression of GABAA receptors, the overall level of neuronal activity was chronically modulated in neonatal rat cortex. Slices of Elvax polymer loaded with the N-methyl-D-asparate (NMDA) receptor antagonist MK-801 or with brain derived neurotrophic factor (BDNF) were placed unilaterally over the left parietal cortex in newborn animals. Unlike thalamic lesions (Paysan et al., 1997), these chronic drug treatments did not alter the laminar distribution or the expression level of the four major GABAA receptor alpha subunit isoforms (alpha 1, alpha 2, alpha 3, alpha 5) in primary somatosensory cortex (S1), as assessed immunohistochemically after one week. In particular, the staining of the barrel field in layers III-IV, which is very prominent with the alpha 1-subunit, was preserved in the drug-treated hemisphere. Even systemic administration of MK-801 at birth, which resulted in pronounced retardation of cortical development, had no effect on the laminar distribution and staining intensity of the four GABAA receptor alpha subunit variants. However, the size of barrels in S1, as measured in tangential sections stained for the GABAA receptor alpha 1 subunit, was enlarged upon chronic, topical blockade of NMDA receptors with MK-801 and was reduced to the same extent upon chronic exposure to BDNF. Thus, these pharmacological treatments modulated cortical growth, possibly by exerting opposite effects on neuronal activity in S1. The results suggest that the parcellation of somatosensory cortex and the laminar distribution of GABAA receptor subtypes are governed primarily by factors independent of thalamocortical activity.  相似文献   

8.
The developmental expression of mRNAs encoding the GABAA receptor was analyzed in the rat cerebellar cortex and in cultured cerebellar granule neurons. Our studies in vivo reveal that the alpha 1-, beta 2-, and gamma 2-subunit mRNA levels in the cerebellar cortex rise dramatically during the second post-natal week, a period temporally correlated with extensive cerebellar maturation. To determine if these increases were preprogrammed or dependent on extrinsic factors, we examined subunit mRNA expression in granule cell cultures prepared at embryonic day 19 (E19) and postnatal day 10 (P10), immature and mature stages of cerebellar development, respectively. In E19 cultures, the alpha 1, beta 2, and gamma 2 GABAA receptor subunit mRNAs were present and their levels remained constant over the 21 d culture period. These results suggest that GABAA receptor gene expression is not intrinsic to the immature granule cells. A different pattern was found in P10 cultures where the three subunit mRNAs were initially present at levels approximately sixfold higher than those found at E19. The beta 2- and gamma 2-subunit mRNAs remained constant for 4 d and then increased sixfold between 4 and 7 d in culture. The magnitude and time course of these increases were similar to the developmental changes that occurred in vivo. Thus, our findings raise the possibility that signals encountered during development are necessary to induce GABAA receptor subunit mRNA expression. Moreover, these cues have been received by granule neurons prior to P10.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
There is extensive evidence that ethanol interacts with a variety of neurotransmitters. Considerable research indicates that the major actions of ethanol involve enhancement of the effects of gamma-aminobutyric acid (GABA) at GABAA receptors and blockade of the NMDA subtype of excitatory amino acid (EAA) receptor. Ethanol increases GABAA receptor-mediated inhibition, but this does not occur in all brain regions, all cell types in the same region, nor at all GABAA receptor sites on the same neuron, nor across species in the same brain region. The molecular basis for the selectivity of the action of ethanol on GaBAA receptors has been proposed to involve a combination of benzodiazepine subtype, beta 2 subunit, and a splice variant of the gamma 2 subunit, but substantial controversy on this issue currently remains. Chronic ethanol administration results in tolerance, dependence, and an ethanol withdrawal (ETX) syndrome, which are mediated, in part, by desensitization and/or down-regulation of GABAA receptors. This decrease in ethanol action may involve changes in subunit expression in selected brain areas, but these data are complex and somewhat contradictory at present. The sensitivity of NMDA receptors to ethanol block is proposed to involve the NMDAR2B subunit in certain brain regions, but this subunit does not appear to be the sole determinant of this interaction. Tolerance to ethanol results in enhanced EAA neurotransmission and NMDA receptor upregulation, which appears to involve selective increases in NMDAR2B subunit levels and other molecular changes in specific brain loci. During ETX a variety of symptoms are seen, including susceptibility to seizures. In rodents these seizures are readily triggered by sound (audiogenic seizures). The neuronal network required for these seizures is contained primarily in certain brain stem structures. Specific nuclei appear to play a hierarchical role in generating each stereotypical behavioral phases of the convulsion. Thus, the inferior colliculus acts to initiate these seizures, and a decrease in effectiveness of GABA-mediated inhibition in these neurons is a major initiation mechanism. The deep layers of superior colliculus are implicated in generation of the wild running behavior. The pontine reticular formation, substantia nigra and periaqueductal gray are implicated in generation of the tonic-clonic seizure behavior. The mechanisms involved in the recruitment of neurons within each network nucleus into the seizure circuit have been proposed to require activation of a critical mass of neurons. Achievement of critical mass may involve excess EAA-mediated synaptic neurotransmission due, in part, to upregulation as well as other phenomena, including volume (non-synaptic diffusion) neurotransmission. Effects of ETX on receptors observed in vitro may undergo amplification in vivo to allow the excess EAA action to be magnified sufficiently to produce synchronization of neuronal firing, allowing participation of the nucleus in seizure generation. GABA-mediated inhibition, which normally acts to limit excitation, is diminished in effectiveness during ETX, and further intensifies this excitation.  相似文献   

10.
Alcohol-nontolerant (ANT) rats, produced by selective breeding for high sensitivity to motor-impairing effects of ethanol, have a point mutation in the cerebellar gamma-aminobutyric acid type A (GABAA) receptor alpha 6 subunit, which has been proposed to underlie enhanced sensitivity to benzodiazepine agonists as well. We compared ANT and alcohol-tolerant (AT) rats using behavioral and neurochemical methods to assess the significance of alpha 6- and non alpha 6-containing GABAA receptor subtypes. Motor performance in a tilting plane test was largely unaffected by a type I benzodiazepine receptor-preferring agonist, zolpidem [1-10 mg/kg, intraperitoneally (IP)], partial benzodiazepine agonists bretazenil and ZG-63 (both at 40 mg/kg, IP), and a novel broad-spectrum anticonvulsant loreclezole (40 mg/kg, IP) in both ANT and AT rats. In contrast, diazepam (10 mg/kg, IP) impaired performance of the ANT but not AT animals. These data, supported by results from brain regional autoradiography of [3H]Ro15-4513 and membrane binding of [3H]ZG-63 and [35S]TBPS as influenced by these ligands, strongly suggest that only ligands with full agonist actions on mutant (ANT) but not wild-type (AT) alpha 6-containing GABAA receptors are able to produce motor impairment in the ANT rats.  相似文献   

11.
Previous research has shown that chronic ethanol consumption dramatically alters GABA(A) receptor alpha1 and alpha4 subunit gene expression in the cerebral cortex and GABA(A) receptor alpha1 and alpha6 subunit gene expression in the cerebellum. However, it is not yet known if chronic ethanol consumption produces similar alterations in GABA(A) receptor gene expression in other brain regions. One brain region of interest is the hippocampus because it has recently been shown that a subset of GABA(A) receptors in the hippocampus is responsive to pharmacologically relevant concentrations of ethanol. Therefore, we directly compared the effects of chronic ethanol consumption on GABA(A) receptor subunit gene expression in the hippocampus and cerebral cortex. Furthermore, we investigated whether the duration of ethanol consumption (14 or 40 days) would influence regulation of GABA(A) receptor gene expression in these two brain regions. Chronic ethanol consumption produced a significant increase in the level of GABA(A) receptor alpha4 subunit peptide in the hippocampus following 40 days but not 14 days. The relative expression of hippocampal GABA(A) receptor alpha1, alpha2, alpha3, beta(2/3), or gamma2 was not altered by either period of chronic ethanol exposure. In marked contrast, chronic ethanol consumption for 40 days significantly increased the relative expression of cerebral cortical GABA(A) receptor alpha4 subunits and significantly decreased the relative expression of cerebral cortical GABA(A) receptor alpha1 subunits. This finding is consistent with previous results following 14 days of chronic ethanol consumption. Hence, chronic ethanol consumption alters GABA(A) receptor gene expression in the hippocampus but in a different manner from that in either the cerebral cortex or the cerebellum. Furthermore, these alterations are dependent on the duration of ethanol exposure.  相似文献   

12.
The relation between changes in brain and plasma concentrations of neurosteroids and the function and structure of gamma-aminobutyric acid type A (GABAA) receptors in the brain during pregnancy and after delivery was investigated in rats. In contrast with plasma, where all steroids increased in parallel, the kinetics of changes in the cerebrocortical concentrations of progesterone, allopregnanolone (AP), and allotetrahydrodeoxycorticosterone (THDOC) diverged during pregnancy. Progesterone was already maximally increased between days 10 and 15, whereas AP and allotetrahydrodeoxycorticosterone peaked around day 19. The stimulatory effect of muscimol on 36Cl- uptake by cerebrocortical membrane vesicles was decreased on days 15 and 19 of pregnancy and increased 2 days after delivery. Moreover, the expression in cerebral cortex and hippocampus of the mRNA encoding for gamma2L GABAA receptor subunit decreased during pregnancy and had returned to control values 2 days after delivery. Also alpha1, alpha2, alpha3, alpha4, beta1, beta2, beta3, and gamma2S mRNAs were measured and failed to change during pregnancy. Subchronic administration of finasteride, a 5alpha-reductase inhibitor, to pregnant rats reduced the concentrations of AP more in brain than in plasma as well as prevented the decreases in both the stimulatory effect of muscimol on 36Cl- uptake and the decrease of gamma2L mRNA observed during pregnancy. These results indicate that the plasticity of GABAA receptors during pregnancy and after delivery is functionally related to fluctuations in endogenous brain concentrations of AP whose rate of synthesis/metabolism appears to differ in the brain, compared with plasma, in pregnant rats.  相似文献   

13.
14.
We sought to test the hypotheses that closely related alcohols would have effects on GABAA receptor function that were not predicted by differences in lipid solubility, and that the subunit structure of the GABAA receptor would significantly affect the actions of different alcohols. Cloned subunits of human GABAA receptors were expressed in Xenopus oocytes, and two-electrode voltage-clamp recording was used to quantify the membrane current response to GABA in the presence and absence of different alcohols. 1-Butanol and 2-butanol differentially potentiated the response to 20 microM GABA in oocytes expressing the alpha 1 beta 2 gamma 2L and alpha 2 beta 2 gamma 2L receptor isoforms. In the alpha 1 beta 2 gamma 2L receptor construct, 1-butanol was more potent than 2-butanol to potentiate GABAA receptor function, but 2-butanol had a greater efficacy. In the alpha 2 beta 2 gamma 2L receptor construct, 1-butanol and 2-butanol were equipotent, but 2-butanol again had a greater efficacy. In the alpha 2 beta 2 receptor construct, both 1-butanol and 2-butanol produced large potentiations of the current response to 3 microM GABA. The efficacy for butanol potentiation of GABA responses in the absence of a gamma 2L subunit was greater, but the potency was greatly reduced. Low concentrations (20 mM) of ethanol potentiated GABA responses in the alpha 1 beta 2 gamma 2L receptor construct. Ethanol potentiation of GABAA receptor function was completely blocked by the benzodiazepine receptor partial inverse agonist RO15-4513 at a concentration (0.5 microM) that did not alter the control GABA response. In contrast, RO15-4513 did not block potentiation of GABAA receptor activity induced by n-propanol, 1-butanol, 2-butanol, 1-heptanol, or propofol (2,6-diisopropylphenol). These results suggest that alcohols have specific interactions with GABAA receptors, and that ethanol may have unique effects not shared by other longer chain alcohols.  相似文献   

15.
Targeting and innervation of the cerebral cortex by thalamic afferents is a key event in the specification of cortical areas. The molecular targets of thalamic regulation, however, have remained elusive. We now demonstrate that thalamic afferents regulate the expression of gamma-aminobutyric acid type A (GABAA) receptors in developing rat neocortex, leading to the area-specific expression of receptor subtypes in the primary visual (V1) and somatosensory (S1) areas. Most strikingly, the alpha1- and alpha5-GABAA receptors exhibited a reciprocal expression pattern, which precisely reflected the distribution of thalamocortical afferents at postnatal day 7. Following unilateral lesions at the birth of the thalamic nuclei innervating V1 and S1 (lateral geniculate nucleus and ventrobasal complex, respectively), profound changes in subunit expression were detected 1 week later in the deprived cortical territories (layers III-IV of V1 and S1). The expression of the alpha1 subunit was strongly down-regulated in these layers to a level comparable to that in neighboring areas. Conversely, the alpha5 subunit was up-regulated and areal boundaries were no longer discernible in the lesioned hemisphere. Changes similar to the alpha5 subunit were also seen for the alpha2 and alpha3 subunits. These results indicate that the differential expression of GABAA receptor subtypes in developing neocortex is dependent on thalamic innervation, contributing to the emergence of functionally distinct areas.  相似文献   

16.
Modification of GABAA receptor mRNA levels by seizure activity can regulate general neuronal excitability. The possibility of absence seizure-induced alteration in GABAA receptor alpha 1, alpha 4, beta 2, and gamma 2 subunit gene expression in thalamic relay nuclei was studied in a rat model of absence seizures induced by gamma-hydroxybutyric acid (GHB). We observed a marked increase in alpha 1 mRNA and a corresponding decrease in alpha 4 mRNA in thalamic relay nuclei 2-4 h after the onset of GHB-induced absence seizures (when the seizures were terminating). These changes were selective to these alpha isoforms as neither beta 2 nor gamma 2 mRNA changed following seizures and occurred only in thalamic relay nuclei but not in hippocampus, a structure from which absence seizures do not evolve. The alterations in alpha 1 and alpha 4 mRNA persisted until about 12 h, and by 24 h after the seizure-onset the mRNA levels normalized. Blocking GHB-seizures produced no change in the levels of alpha 1 and alpha 4 mRNA in thalamic relay nuclei, suggesting that seizures themselves were responsible for mRNA alterations. In order to determine if absence seizure-induced changes in alpha 1 and alpha 4 mRNA had any physiological significance, GHB was readministered in rats 6 and 24 h after the onset of seizures. The total duration of GHB-seizures was found to be significantly decreased when GHB was readministered at 6 h but not 24 h after the seizure-onset. These results suggest that absence seizures regulate GABAA receptor alpha 1 and alpha 4 gene expression in thalamic relay nuclei as a compensatory mechanism by which absence seizures are terminated.  相似文献   

17.
Three novel subunit-specific antisera to the beta1, beta2, and beta3 subunits of rat gamma-aminobutyric acid type A (GABAA) receptors have been used to study the native receptor in the rat brain. Affinity-purified anti-beta1, anti-beta2, and anti-beta3 antibodies recognized in immunoblots protein bands of 57, 55, and 57 kDa, respectively. Quantitative immunoprecipitation of solubilized GABAA receptors from various rat brain regions showed that the beta2 subunit was the most abundant isoform in cerebellum (in 96% of the GABAA receptors) and cerebral cortex (64%) but that it was the least abundant isoform in hippocampus (44%). The beta3 subunit was found most abundant in hippocampus (64%) followed by cerebral cortex (48%) and cerebellum (33%). The beta1 subunit was present in a very small proportion of the cerebellar GABAA receptors (3%), but it was present in a high proportion of the GABAA receptors from the hippocampus (49%) and cerebral cortex (32%). Quantitative receptor immunoprecipitation or immunopurification followed by immunoblotting experiments have revealed the existence of colocalization of two different beta subunit isoforms in a significant proportion of the brain GABAA receptors. Thus, in the rat cerebral cortex 33% of the GABAA receptors have both beta2 and beta3 subunits, and 19% of the receptors have both beta1 and beta3 subunits. The extent of colocalization of beta subunit isoforms varied among brain regions, being highest in hippocampus and lowest in cerebellum. These and other results taken together suggest that the number of alpha, beta, and gamma subunits (stoichiometry) in the brain GABAA receptor pentamers might not be unique. It might vary depending on receptor type.  相似文献   

18.
GABAA receptors composed of human alpha 1 beta 2 gamma 2L, alpha 1 beta 2 gamma 2S, alpha 1 beta 3 gamma 2S, alpha 6 beta 3 gamma 2S, and alpha 5 beta 3 gamma 3 subunits as well as bovine alpha 1 beta 1 gamma 2L and alpha 1 beta 1 subunits were stably expressed in mammalian L(tk-) cells and transiently expressed in Xenopus oocytes. Effects of muscimol, ethanol, flunitrazepam, and pentobarbital on receptor function were compared for the two expression systems using a 36Cl- flux assay for cells and an electrophysiological assay for oocytes. Muscimol activated all receptors in both expression systems but was more potent for L(tk-) cells than oocytes; this difference ranged from 2.6-to 26-fold, depending upon subunit composition. The most pronounced differences between receptors and expression systems were found for ethanol. In L(tk-) cells, low (5-50 mM) concentrations of ethanol potentiated muscimol responses only with receptors containing the gamma 2L subunit. In oocytes, concentrations of 30-100 mM produced small enhancements for most subunit combinations. Flunitrazepam enhanced muscimol responses for all receptors except alpha 6 beta 3 gamma 2S and alpha 1 beta 1, and this enhancement was similar for both expression systems. Pentobarbital also enhanced muscimol responses for all receptors, and this enhancement was similar for L(tk-) cells and oocytes, except for alpha 6 beta 3 gamma 2S where the pentobarbital enhancement was much greater in oocytes than cells. The alpha 6 beta 3 gamma 2S receptors were also distinct in that pentobarbital produced direct activation of chloride channels in both expression systems. Thus, the type of expression/assay system markedly affects the actions of ethanol on GABAA receptors and also influences the actions of muscimol and pentobarbital on this receptor. Differences between these expression systems may reflect posttranslational modifications of receptor subunits.  相似文献   

19.
20.
Long-term treatment with diazepam, a full allosteric modulator of the GABA(A) receptor, results in tolerance to its anticonvulsant effects, whereas an equipotent treatment with the partial allosteric modulator imidazenil does not produce tolerance. Use of subunit-specific antibodies linked to gold particles allowed an immunocytochemical estimation of the expression density of the alpha1, alpha2, alpha3, alpha5, gamma(2L&S) and beta(2/3) subunits of the GABA(A) receptor in the frontoparietal motor and frontoparietal somatosensory cortices of rats that received long-term treatment with vehicle, diazepam (three times daily for 14 days, doses increasing from 17.6 to 70.4 micromol/kg), or imidazenil (three times daily for 14 days, doses increasing from 2.5 to 10.0 micromol/kg). In this study, tolerance to diazepam was associated with a selective decrease (37%) in the expression of the alpha1 subunit in layers III-IV of the frontoparietal motor cortex, and a concomitant increase in the expression of the alpha5 (150%), gamma(2L&S) and beta(2/3) subunits (48%); an increase in alpha5 subunits was measured in all cortical layers. In the frontoparietal somatosensory cortex, diazepam-tolerant rats had a 221% increase in the expression of alpha5 subunits in all cortical layers, as well as a 35% increase in the expression of alpha3 subunits restricted to layers V-VI. Western blot analysis substantiated that these diazepam-induced changes reflected the expression of full subunit molecules. Rats that received equipotent treatment with imidazenil did not become tolerant to its anticonvulsant properties, and did not show significant changes in the expression of any of the GABA(A) receptor subunits studied, with the exception of a small decrease in alpha2 subunits in cortical layers V-VI of the frontoparietal somatosensory cortex. The results of this study suggest that tolerance to benzodiazepines may be associated with select changes in subunit abundance, leading to the expression of different GABA(A) receptor subtypes in specific brain areas. These changes might be mediated by a unique homeostatic mechanism regulating the expression of GABA(A) receptor subtypes that maintain specific functional features of GABAergic function in cortical cell layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号