首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study the effect of chemical composition on microstructural features and mechanical properties of dissimilar joints between super duplex and austenitic stainless steels, welding was attempted by gas tungsten arc welding process with a super duplex (ER2594) and an austenitic (ER309LMo) stainless steel filler metal. While the austenitic weld metal had vermicular delta ferrite within austenitic matrix, super duplex stainless steel was mainly comprised of allotriomorphic grain boundary and Widmanstätten side plate austenite morphologies in the ferrite matrix. Also the heat-affected zone of austenitic base metal comprised of large austenite grains with little amounts of ferrite, whereas a coarse-grained ferritic region was observed in the heat-affected zone of super duplex base metal. Although both welded joints showed acceptable mechanical properties, the hardness and impact strength of the weld metal produced using super duplex filler metal were found to be better than that obtained by austenitic filler metal.  相似文献   

2.
Quenched and tempered (Q&T) steels are prone to hydrogen induced cracking after welding. Austenitic stainless steel (ASS) welding consumables are traditionally used for welding of high hardness, Q&T steels as they have higher solubility for hydrogen in the austenitic phase. The use of stainless steel consumables for a non stainless steel base metal is not economical. Hence, in the present work, an attempt was made to explore alternate consumables for welding Q&T steels. Flux cored arc welding process was used to fabricate the joints using austenitic stainless steel and low hydrogen ferritic steel consumables. The joints fabricated using low hydrogen ferritic steel consumables exhibited superior fatigue performances than the joints fabricated using ASS consumables.  相似文献   

3.
Quenched and Tempered (Q&T) steels are widely used in the construction of military vehicles due to their high strength-to-weight ratio and high hardness. These steels are prone to hydrogen-induced cracking in the heat affected zone (HAZ) after welding. The use of austenitic stainless steel consumables to weld the above steel was the only remedy because of higher solubility for hydrogen in austenitic phase. Recent studies proved that high nickel steel and low hydrogen ferritic steel consumables can be used to weld Q&T steels, which can give very low hydrogen levels in the weld deposits. In this investigation an attempt has been made to study the effect of welding consumables on high cycle fatigue properties of high strength, Q&T steel joints. Three different consumables namely (i) austenitic stainless steel, (ii) low hydrogen ferritic steel, and (iii) high nickel steel have been used to fabricate the joints by shielded metal arc (SMAW) welding process. The joints fabricated using low hydrogen ferritic steel electrodes showed superior fatigue properties than other joints.  相似文献   

4.
Welding of high-strength low-alloy (HSLA) steels involves the use of low-strength, equal-strength, and high-strength filler materials (electrodes) compared with the parent material, depending on the application of the welded structures and the availability of filler material. In the present investigation, the fatigue crack growth behavior of weld metal (WM) and the heat-affected zone (HAZ) of undermatched (UM), equally matched (EM), and overmatched (OM) joints has been studied. The base material used in this investigation is HSLA-80 steel of weldable grade. Shielded metal arc welding (SMAW) has been used to fabricate the butt joints. A center-cracked tension (CCT) specimen has been used to evaluate the fatigue crack growth behavior of welded joints, utilizing a servo-hydraulic-controlled fatigue-testing machine at constant amplitude loading (R=0). The effect of notch location on the fatigue crack growth behavior of strength mismatched HSLA steel weldments also has been analyzed.  相似文献   

5.
The welding of a duplex stainless steel SAF 2205 DSS(UNS 31803) and high strength low alloy steel API X52 by shielded metal arc welding process was conducted using two different filler metals,the duplex E2209 and austenitic E309 grade.The microstructures of the dissimilar metal joints have been investigated by optical microscopy,scanning electron microscopy,energy-dispersive spectroscopy(EDS) and X-ray diffraction.EDS analysis at the interface X52 weld metal showed an evident gradient variation of Cr and Ni between boundaries of fusion and type II,where the highest hardness value was recorded.Tensile strength and toughness values of the weld metal produced by E309 electrode are slightly higher than those of the weld metal produced by E2209 electrode.Potentiodynamic polarization tests of different regions of the welded joints evaluated in 3.5%NaCl solution exhibit a high corrosion resistance of both weld metals.  相似文献   

6.
Abstract

Welding of high strength low alloy steels (HSLA) involves usage of low, even and high strength filler materials (electrodes) compared with the parent material depending on the application of the welded structures and the availability of the filler material. In the present investigation, the influences of post-weld heat treatment (PWHT) on fatigue crack growth behaviour of under matched (UM), equal matched (EM) and over matched (OM) weld metals has been studied. The base material used in this investigation is HSLA-80 steel of weldable grade. The Shielded Metal Arc Welding (SMAW) process has been used to fabricate the single 'V' butt joints. Centre Cracked Tension (CCT) specimens have been used to evaluate the fatigue crack growth behaviour of the welded joints. Fatigue crack growth experiments have been conducted using servo hydraulic controlled fatigue testing machine at constant amplitude loading (R = 0). From this investigation, it has been found that the fatigue performance of over matched joints is superior compared to under matched and equal matched joints. Moreover, PWHT reduced the magnitude of the tensile residual stress field in the weld region and subsequently enhanced the fatigue performance of the joints irrespective of weld metal strength mismatch.  相似文献   

7.
This study addresses the effect of different types of austenitic and austeno-ferritic electrodes (E309L, E309LMo and E2209) on the relationship between weldability, microstructure, mechanical properties and corrosion resistance of shielded metal arc welded duplex/austenitic (2205/316L) stainless steel dissimilar joints using the combined techniques of optical, scanning electron microscope, energy-dispersive spectrometer and electrochemical. The results indicated that the change in electrode composition led to microstructural variations in the welds with the development of different complex phases such as vermicular ferrite, lathy ferrite, widmanstatten and intragranular austenite. Mechanical properties of welded joints were diverged based on compositions and solidification modes; it was observed that ferritic mode solidified weld dominated property wise. However, the pitting corrosion resistance of all welds showed different behavior in chloride solution; moreover, weld with E2209 was superior, whereas E309L exhibited lower resistance. Higher degree of sensitization was observed in E2209 weld, while lesser in E309L weld. Optimum ferrite content was achieved in all welds.  相似文献   

8.
Abstract

Reports in the literature indicate that the fillet geometry affects the fatigue properties of cruciform welded joints in structural steels. In an attempt to study the above effect with respect to stainless steel sheet metal welded joints, load carrying transverse fillet welded cruciform joints having a two fillet geometry were fabricated from AISI 304L stainless steel using gas tungsten arc welding and gas metal arc welding with 308L electrodes. The objective of the present work is to predict the fatigue life of AISI 304L cruciform joints failing at the weld toe using a two stage model. The local stress life method was applied to calculate the fatigue crack initiation life, whereas the fatigue crack propagation life was estimated using fracture mechanics concepts. Constant amplitude fatigue tests with stress ratio R ~ 0 were carried out using a 100 kN servohydraulic Dartec universal testing machine at a frequency of 30 Hz. An automatic crack monitoring system based on crack propagation gauges was used to obtain the propagation data during the fatigue process. The predicted lives were compared with the experimental values.  相似文献   

9.
The main objective of the present investigation was to assess the constitutive behaviour of the graded structures produced by laser shock processing (LSP) on laser welded joints made between thin sheets of ferritic and austenitic stainless steel. First, the evolution of surface strain patterns during uniaxial loading of the as welded and LSP treated joints was experimentally obtained by using a video-image correlation technique. Overall and local constitutive behaviour across the weld, heat affected zone and parent metals resulted by coupling the applied load level with the corresponding strain average of each zone. The differences found in mechanical resistance of the LSP treated zones when comparing with the as welded ones were due to the processing features, namely the generation of compressive stresses and the development of graded surface structures. Special attention was paid on changes occurred in the ferritic steel side of the joint, which acts as a mechanical cut-out fuse in structures working in energy related applications. Then, by extrapolating the fatigue fracture behaviour of macroscopic notches to the surface cavities and irregularities from which surface topography results it was found that LSP improves the ferritic steel side fatigue resistance. Additionally, the growth of eventual surface flaws is delayed by the compressive stress state induced by LSP, as indicated by in-depth X-ray measurements.  相似文献   

10.
Dissimilar joint between 304L austenitic stainless steel and low-alloy steel 16Mn was underwater wet welded using self-shielded nickel-based tubular wire. Microstructure, mechanical properties and corrosion behaviour of dissimilar welded joints were discussed. Ni-based weld metal was fully austenitic with well-developed columnar sub-grains. Type II boundary existed between Ni-based weld metal and ferritic base metal in underwater welds similar to that in air welds. Major alloying elements distributed non-uniformly across the austenitic weld metal/16Mn interface. Maximum hardness values in wet welding appeared in a coarse-grained heat-affected zone at the 16Mn side, which possessed very low impact toughness. Underwater Ni-based welded joints fractured at Ni-based weld metal under tensile test. Ni-based weld metal had favourable corrosion resistance similar to 304L base metal.  相似文献   

11.
Abstract

Pitting Corrosion behaviour of similar and dissimilar metal welds of three classes of stainless steels, namely, austenitic stainless steel (AISI 304), ferritic stainless steel (AISI 430) and duplex stainless steel (AISI 2205), has been studied. Three regions of the weldment, i.e. fusion zone, heat affected zone and unaffected parent metal, were subjected to corrosion studies. Electron beam and friction welds have been compared. Optical, scanning electron microscopy and electron probe analysis were carried out to determine the mechanism of corrosion behaviour. Dissimilar metal electron beam welds of austenitic–ferritic (A–F), ferritic–duplex (F–D) and austenitic–duplex stainless steel (A–D) welds contained coarse grains which are predominantly equiaxed on austenitic and duplex stainless steel side while they were columnar on the ferritic stainless steel side. Microstructural features in the central region of dissimilar stainless steel friction welds exhibit fine equiaxed grains due to dynamic recrystallisation as a result of thermomechanical working during welding and is confined to ferritic stainless steel side in the case of A–F, D–F welds and duplex stainless steel side in the case of D–A welds. Beside this region bent and elongated grains were observed on ferritic stainless steel side in the case of A–F, D–F welds and duplex stainless steel side in the case of D–A welds. Interdiffusion of elements was significant in electron beam welding and insignificant in friction welds. Pitting corrosion has been observed to be predominantly confined to heat affected zone (HAZ) close to fusion boundary of ferritic stainless steel interface of A–F electron beam and D–F electron beam and friction weldments. The pitting resistance of stainless steel electron beam weldments was found to be lower than that of parent metal as a result of segregation and partitioning of alloying elements. In general, friction weldments exhibited better pitting corrosion resistance due to lower incidence of carbides in the microstructure.  相似文献   

12.
研究了酸洗和固溶处理对8种不锈钢筋电阻对焊接头抗点蚀能力的影响。研究发现,酸洗和因咱都有效地改善和恢复不锈钢电阻对焊接头的抗点蚀性能。对于普通双相钢,固溶处理比酸洗能更有产地改善接头的抗点蚀性能,并无晶粒粗化。对于奥氏体钢和超纸奥氏体风,固溶处理的效果不及酰洗,且会引起母材晶粒粗化。对含Mo含N较高钢种的对焊接头,两者的更佳,尤其是两者综合处理后的接头,其临界点蚀温度CPT其至高于对应母材经酸洗以  相似文献   

13.
酸洗和固溶处理对不锈钢抗点蚀性能的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
胡礼木 《焊接学报》2000,21(1):83-93
研究了酸洗和固溶处理对 8种不锈钢钢筋电阻对焊接头抗点蚀能力的影响。研究发现 ,酸洗和固溶处理都能有效地改善和恢复不锈钢电阻对焊接头的抗点蚀性能。对于普通双相钢 ,固溶处理比酸洗能更有效地改善接头的抗点蚀性能 ,并无晶粒粗化现象 ;对于奥氏体钢和超级奥氏体钢 ,固溶处理的效果不及酸洗 ,且会引起母材晶粒粗化。对含Mo含N较高钢种的对焊接头 ,两者的效果更佳 ,尤其是两者综合处理后的接头 ,其临界点蚀温度CPT甚至高于对应母材经酸洗以后的CPT。文章对比分析了母材和固溶处理前后接头的显微组织 ,讨论了引起上述抗点蚀性能变化的原因。文章还探讨了酸洗和Mo、N元素可以改善不锈钢抗点蚀性能的机理。  相似文献   

14.
采用TIG焊方法,分别选择9Cr-1Mo钢焊丝、A347焊丝和Inconel82Ni基合金焊丝作填充材料对Fe3Al合金与A304不锈钢进行焊接试验,并对接头质量进行了检测分析。结果表明:三种填充焊丝的焊缝中均有裂纹产生,并且在Fe3Al合金的热影响区还出现了微裂纹;采用Cr-Mo钢焊丝时,溶池金属沿Fe3Al母材基体结晶长大,接头区组织较均匀,而采用Ni基焊丝时,Fe3Al侧存在界线明显的熔合区。  相似文献   

15.
采用TIG焊方法,分别选择9Cr-1Mo钢焊丝、A347焊丝和Inconel82Ni基合金焊丝作填充材料对Fe3Al合金与A304不锈钢进行焊接试验,并对接头质量进行了检测分析。结果表明:三种填充焊丝的焊缝中均有裂纹产生,并且在Fe3Al合金的热影响区还出现了微裂纹;采用Cr—Mo钢焊丝时,溶池金属沿FeAl母材基体结晶长大,接头区组织较均匀,而采用Ni基焊丝时,Fe3Al侧存在界线明显的熔合区。  相似文献   

16.
I-Hsuang Lo 《Corrosion Science》2007,49(4):1847-1861
The effect of selective dissolution on fatigue crack initiation of 2205 duplex stainless steel (DSS) was investigated in this study. In mixed sulfuric and hydrochloric acid aqueous solution, there existed two distinctly separated anodic peaks in the active-to-passive transition region of the polarization curve. Either ferritic or austenitic phase was selectively dissolved at each characteristic anodic peak potential. Under sinusoidal cyclic loading condition, however, selective dissolution did not assist fatigue crack initiation instead resulting in the elimination of stress concentration site in the selectively dissolving phase. As a consequence, under selective dissolution condition, fatigue crack initiated in the phase while its dissolution rate was lower with respect to the other constituent phase in the duplex stainless steel. The microstructural evolution of the corrosion fatigue crack initiation in 2205 DSS in the mixed sulfuric and hydrochloric acid solution is highlighted in this investigation.  相似文献   

17.
On the base of the methods of predicting weld metal microstructures of pearlitic dissimilar steel welded joints using austenitic type filler materials by Schaeffler Diagram, the other new methods of predicting and expressing weld metal microstructures of two kinds of dissimilar steel welded joints (pearlite/pearlite and austenite/pearlite) using austenitic filler materials by Schaeffler Diagram are suggested. Those new methods resolve some difficult problems which the microstructure kinds in two heterogeneous mixture zones of weld metal neighbouring two kinds of welded base metals are difficult to be accurately ascertained and the fluctuations of weld metal microstructures across fusion line are difficult to be conveniently expressed according to the traditional predicting method. The new predicting methods are more concise and practical.  相似文献   

18.
AA2219 aluminium alloy square butt joints without filler metal addition were fabricated using gas tungsten arc welding (GTAW), electron beam welding (EBW), and friction stir welding (FSW) processes. The fabricated joints were post-weld aged at 175 °C for 12 h. The effect of three welding processes and post-weld aging (PWA) treatment on the fatigue properties is reported. Transverse tensile properties of the welded joints were evaluated. Microstructure analysis was also carried out using optical and electron microscopes. It was found that the post-weld aged FSW joints showed superior fatigue performance compared to EBW and GTAW joints. This was mainly due to the formation of very fine, dynamically recrystallized grains and uniform distribution of fine precipitates in the weld region.  相似文献   

19.
采用奥氏体焊材ER309LSi-G焊丝对T4003铁素体不锈钢与Q450NQR1耐候钢异种钢进行两种不同焊接热输入的MAG焊接,通过显微组织和力学性能等试验,对两种焊接接头性能进行研究。结果表明:两种焊接接头均未发现缺陷,焊接接头性能较好。与0.82 kJ/mm热输入比较,0.62 kJ/mm热输入下的焊接接头冲击韧性及硬度较好,熔合线较窄,晶粒度较为细小,拉伸数值较高,更加适用于T4003铁素体不锈钢与Q450NQR1耐候钢异种钢焊接。  相似文献   

20.
The materials used in off-shore oil and gas production, e.g. in risers, are often exposed to cyclic loads from the water movement because of their contact with seawater. These factors acting together can develop a corrosion fatigue (CF) process. A duplex and a 13% chromium (13Cr) wrought stainless steel (SS) and a welded nickel base alloy Inconel 625 were tested at different cyclic load magnitudes in an eccentric fatigue machine type. The specimens were tested in the presence of a corrosive environment at low loading frequencies (0.3 Hz). The medium used was an aqueous solution with 115.000 ppm of chloride, pH adjusted to 4, and CO2 bubbling inside the solution during the test. The end of the test was determined in maximum 500.000 cycles (23 days for frequency of 0.3 Hz) if no fracture occurred before. In the 13Cr steel the fissure seems to propagate in a uniform unique path, while in the duplex steel the crack changes the direction when passing from the ferritic to austenitic grains. The propagation speed seems to be different in the ferrite and in the austenitic structures. Among the materials tested the Inconel 625 alloy, even being in the welded condition, showed higher CF strength than the SSs; 13Cr shows better results when compared with the duplex steel, even though the last one would be more corrosion resistant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号