首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
This work investigates the feasibility of using parabolic trough solar field to increase the enthalpy from geothermal wells’ flow in order to increase the steam tons; in addition, it is possible to prevent silica deposition in the geothermal process. The high levels of irradiance in Northwestern Mexico make it possible to integrate a solar-geothermal hybrid system that uses two energy resources to provide steam for the geothermal cycle, like the Cerro Prieto geothermal field. The plant consists of a geothermal well, a parabolic trough solar field in series, flash separator, steam turbine and condenser. Well “408” of Cerro Prieto IV has enthalpy of 1566 kJ/kg and its quality must be increased by 10 points, which requires a Δh of 194.4 kJ/kg. Under these considerations the parabolic troughs area required will be 9250 m2, with a flow of 92.4 tons per hour (25.67 kg/s). The solar field orientation is a N–S parabolic trough concentrator. The silica content in the Cerro Prieto geothermal brine causes problems for scaling at the power facility, so scale controls must be considered.  相似文献   

2.
Modeling studies: The Dachny geothermal reservoir, Kamchatka, Russia   总被引:1,自引:0,他引:1  
The spatial distribution of pre-exploitation conditions (i.e. temperature and pressure distribution, liquid and vapor saturations, circulation characteristics of high-temperature fluids) in the Dachny field of the Mutnovsky hydrothermal system, obtained using a three-dimensional (3-D) mapping method, are revised on the basis of natural-state simulations performed using the computer code TOUGH2. A 3-D model of the natural-state conditions at the Dachny site was developed. The fine-tuning of the model was achieved by comparing computer results to the observations made in geothermal wells tested during 1983–1988. Also studied was the behavior of the field in response to different exploitation scenarios, assuming production from existing and additional wells needed to supply sufficient steam to a proposed 80 MWe power plant.  相似文献   

3.
With an installed geothermal electric capacity of 853 MWe, Mexico is currently the third largest producer of geothermal power worldwide, after the USA and the Philippines. There are four geothermal fields now under exploitation: Cerro Prieto, Los Azufres, Los Humeros and Las Tres Vírgenes. Cerro Prieto is the second largest field in the world, with 720 MWe and 138 production wells in operation; sedimentary (sandstone) rocks host its geothermal fluids. Los Azufres (88 MWe), Los Humeros (35 MWe) and Las Tres Vírgenes (10 MWe) are volcanic fields, with fluids hosted by volcanic (andesites) and intrusive (granodiorite) rocks. Four additional units, 25 MWe each, are under construction in Los Azufres and due to go into operation in April 2003. One small (300 kW) binary-cycle unit is operating in Maguarichi, a small village in an isolated area with no link to the national grid. The geothermal power installed in Mexico represents 2% of the total installed electric capacity, but the electricity generated from geothermal accounts for almost 3% of the national total.  相似文献   

4.
As part of a joint USGS-CFE geochemical study of Cerro Prieto, steam samples were collected for gas analyses in April, 1977. Analyses of the major gas components of the steam were made by wet chemistry (for H2O,CO2,H2S and NH3) and by gas chromatography (He,H2,Ar,O2,N2 and hydrocarbons).The hydrocarbon gases in Cerro Prieto steam closely resemble hydrocarbons in steam from Larderello, Italy and The Geysers, California which, although they are vapor-dominated rather than hot-water geothermal systems, also have sedimentary aquifer rocks. These sedimentary geothermal hydrocarbons are characterized by the presence of branched C4–6 compounds and a lack of unsaturated compounds other than benzene. Relatively large amounts of benzene may be characteristic of high-temperature geothermal systems. All hydrocarbons in these gases other than methane most probably originate from the thermal metamorphosis of organic matter contained in the sediments.  相似文献   

5.
Some wells of the Cerro Prieto geothermal field have undergone changes in the chemistry of fluids produced which reflect reservoir processes. Pressure decreases due to production in the southeastern part of the field have produced both drawdown of lower chloride fluids from an overlying aquifer and boiling in the aquifer with excess steam reaching the wells. These reservoir changes are indicated by changes in fluid chloride concentrations, Na/K ratios and measured enthalpies and by comparisons of aquifer fluid temperatures and chloride concentrations calculated from enthalpy and chemical measurements. Fluid temperatures have not been greatly affected by this drawdown because heat contained in the rock was transferred to the fluid. When this heat is exhausted, fluid temperatures may drop rapidly.  相似文献   

6.
The evaluation of well logs from the Cerro Prieto geothermal field is made difficult by the wellbore conditions existing during the logging runs and by the complex minerology of the hydrothermal reservoir.In order to obtain well logs at the Cerro Prieto geothermal field, the wellbore must be cooled to at least the maximum operational temperature of available well-logging equipment, normally 120°C. Since undisturbed formation temperatures are usually in excess of 250°C at Cerro Prieto, the cooling of the wellbore creates an acute thermal gradient between the wellbore and the undisturbed formations. An understanding of the influence of this gradient on logging responses is necessary to establish confidence in well log evaluations.Similarly, since the mineralogic characteristics of the formations affect the well-log responses, quantitative mineralogic studies of wellbore cuttings and core make an important contribution to log evaluation. This influence is pronounced in a hydrothermal reservoir where complex mineralogies occur.An appreciation of the effects of wellbore cooling and complex mineralogies on log responses should increase confidence in the evaluation of Cerro Prieto geothermal well logs.  相似文献   

7.
Isotopic patterns for the year 2000 in the Los Azufres geothermal reservoir were related to injection of a condensed steam–water–air mixture as well as to the occurrence of reservoir physical processes resulting from exploitation. Reservoir boiling and mixing of reservoir fluids with cooler fluids were the most important processes identified. Boiling takes place in two zones of the field. In the north, the boiling area includes wells AZ-13, AZ-28, AZ-48, AZ-43 and AZ-32, while, in the south, boiling affects wells AZ-16AD, AZ-22, AZ-18, AZ-26 and AZ-36. Mixing of reservoir fluids with cooler waters was identified in wells AZ-2, AZ-33, AZ-16 and AZ-46 located in the southern zone and in well AZ-4 in the north. The isotopic (oxygen-18 and deuterium) patterns of fluids collected in September 2000 show that the original convective process found in the unperturbed reservoir is still taking place, although mixing of reservoir and reinjected fluids is also indicated. According to N2 data, the effects of reinjection on the physical and chemical characteristics of the reservoir fluids can be observed in the northern part of the field. Until now, however, only a steam phase, resulting from boiling and steam separation of the re-injected mixture, is evident in the fluids discharged by the northern wells.  相似文献   

8.
Geothermal power development at the Oguni field, central Kyushu, is planned to begin in the year 2001 with a double flash system generating 20 MWe. The Oguni reservoir has been delineated by systematic geothermal surveys, well tests and reservoir engineering studies. The fractured reservoir is horizontally layered and divided into northern and southern portions. Both of them have NaCl dominant fluids ranging from 200 to 240°C. The northern reservoir covers a large area including the Takenoyu Fault Zone and has a relatively high permeability (kh≈80–230 darcy-m). By contrast, the southern reservoir covers a relatively small area and has limited transmissivity. The southern reservoir has a higher pressure (1 MPa) than the northern reservoir, indicating little connectivity between them. Based on numerical calculations, as well as the surface topography and environmental aspects, the production and reinjection zones have been separated, and a large part of the necessary fluid will be produced from the northern reservoir along the Takenoyu Fault and a small part will be taken from the southern reservoir. The separated water will be reinjected into the northernmost part of the northern reservoir, in order to prevent a cold sweep problem for production.  相似文献   

9.
The 2000–2005 management and field monitoring procedures at the Balcova–Narlidere geothermal field, Turkey are described. During that period, fluid production increased from 140 to 300 kg/s and the living space being heated grew from 0.64 to 1.6 million m2. The shallow (depth <160 m) injection done between 1996 and 2002 cooled the fluids being produced; the hydraulic connection between shallow production and injection wells was confirmed by tracer tests. Two deep injection wells were drilled to mitigate the problem and to increase injection capacity. Because net fluid extraction was reduced, reservoir pressure drawdown was controlled. Wells drilled after 2000 indicated that the eastern portion of the field had greater potential and yielded higher temperature fluids. After testing and establishing well flow performance, pump capacities were matched to production well capacities. Mineral scaling in wells and surface installations was brought under control reducing the annual cost of inhibitors by about US$100,000. Since all production and injection wells are located near the Agamemnon fault zone and because the capacity of the district heating system is being continuously increased, there is the risk of thermal breakthrough in the production wells.  相似文献   

10.
E.R. Olson   《Geothermics》1979,8(3-4)
The inferences derived from oxygen and carbon isotope data for calcite samples from the Cerro Prieto geothermal field depend on the sample type. The δ18O values for calcite in sandstone provide a reliable basis for estimating stable reservoir temperatures and the δ18O values for calcite in shale can be related to the extent and spatial distribution of subsurface flow. The δ18O values for vein calcite record short-lived polythermal fracture-filling episodes at temperatures that may differ from those in the adjacent stable reservoir. The oxygen isotope data for shales indicate a minimum water - rock volume ratio of 2:1. Even this high flow was greatly exceeded in sandstones, with the result that the reservoir fluids are isotopically well-mixed and of relatively low salinity.  相似文献   

11.
The Wairakei geothermal field has been under production for more than 50 years. Exploration wells show that the high-temperature and very permeable, productive resource extends over about 12 km2 within a greater area of about 25 km2 that shows various effects of thermal activity. Up to 2006, 3 km3 of fluid and 2750 PJ of energy had been extracted at an average rate of 5250 t/h and enthalpy of 1130 kJ/kg. Significant production started in 1955 and up to 1978 there was no injection of cooled geothermal fluids. During the first decade of operation a pressure drawdown of up to 20 bars (2 MPa) developed and spread evenly across the reservoir, even though fluid extraction was focused within an area of 1 km2 close to the northeastern field boundary. This pressure reduction resulted in widespread boiling and formation of segregated steam zones at the top of the reservoir together with inflow of cooler fluids into its northeastern part via the original natural outflow channels. From 1975 to 1997 pressures in the deep liquid reservoir stabilized at 23–25 bars (2.3–2.5 MPa) below the original pressure, with little change up to the time injection commenced in 1998. This natural pressure support indicates that prior to injection there was substantial recharge, 80% of which is assessed as high-temperature deep inflow. Since 1998 about 30% of the extracted fluids have been injected and reservoir pressures have increased by 3–4 bars (0.3–0.4 MPa). To date, significant returns of injected fluids have not been detected in the production areas. Over the 50 years of operation, temperatures in the main production areas have declined from 250 to 220 °C while deeper production zones toward the western boundary of the reservoir have remained at about 250 °C. A series of deeper makeup wells to maintain future production have been drilled in the high-temperature recharge area. An increasing fraction of injection, both in-field and out-field is planned over the next few years.  相似文献   

12.
Apparent resistivities measured by means of repetitive dipole-dipole surveys show significant changes within the Cerro Prieto reservoir. The changes are attributed to production and natural recharge. To understand better the observed geophysical phenomena, we performed a simple reservoir simulation study combined with the appropriate DC resistivity calculations to determine the expected magnitude of apparent resistivity change. We consider production from a liquid dominated reservoir with dimensions and parameters of the Cerro Prieto ‘A’ reservoir and assume lateral and vertical recharge of colder and less saline waters. Based on rather schematic one- and two-dimensional reservoir simulations, we calculate changes in formation resistivity which we then transform into changes in apparent resistivity that would be observed at the surface. Simulated changes in apparent resistivities over the production zone show increases of 10 to 20% over a 3 year period at the current rate of fluid extraction. Changes of this magnitude are not only within our ability to discern using proper field techniques, but are consistent in magnitude with some of the observed effects. However, the patterns of apparent resistivity changes in the simulated dipole-dipole pseudosection only partially resemble the observed field data. This is explained by the fact that the actual fluid recharge into the ‘A’ reservoir is more complicated than assumed in our simple, schematic recharge models. DC resistivity monitoring appears capable of providing indirect information on fluid flow processes in a producing geothermal reservoir. Such information is extremely valuable for the development of quantitative predictions of future reservoir performance.  相似文献   

13.
A three dimensional numerical model of the northwest (NW) Sabalan geothermal system was developed on the basis of the designed conceptual model from available field data. A numerical model of the reservoir was expressed with a grid system of a rectangular prism of 12 km × 8 km with 4.6 km height, giving a total area of 96 km2. The model has 14 horizontal layers ranging in thickness between 100 m to 1000 m extending from a maximum of 3600 to −1000 m a.s.l. Fifteen rock types were used in the model to assign different horizontal permeabilities from 5.0 × 10−18 to 4.0 × 10−13 m2 based on the conceptual model.Natural state modeling of the reservoir was performed, and the results indicated good agreements with measured temperature and pressure in wells. Numerical simulations were conducted for predicting reservoir performances by allocating production and reinjection wells at specified locations. Three different exploitation scenarios were examined for sustainability of reservoir for the next 30 years. Effects of reinjection location and required number of makeup wells to maintain the specified fluid production were evaluated. The results showed that reinjecting at Site B, immediate adjacent to production zone, is most effective for pressure maintenance of the system.On the base of existing data and assumptions the reservoir can sustain producing fluid equivalent to 50 MWe of electricity for more than 30 years. The reservoir can produce the maximum amount of fluids equivalent to 90-100 MWe for only 5 years, but the production capacity decreases to 50 MWe after 20 years of operation because of pressure and enthalpy drop. The reservoir can sustain 50 MWe over 100 years that can be defined as a sustainable production level of the field.  相似文献   

14.
Detailed petrologic studies completed to date on ditch cuttings and core from 23 wells in the Cerro Prieto field have led to recognition of regularly distributed prograde metamorphic mineral zones. The progressive changes in mineralogy exhibit a systematic relationship with reservoir temperature.The Cerro Prieto reservoir consists of a series of sandstones, siltstones, and shales composing part of the Colorado River delta. The western part of the field contains relatively coarser sediments apparently also derived from the delta and not from the basin margins as formerly thought. The most abundant detrital minerals in the sediments include quartz, feldspar, kaolinite, montmorillonite, illite, chlorite, mixed-layer clays, calcite, dolomite and iron hydroxides. Some of these minerals were also formed diagenetically.The following progressive stages of post-depositional alteration in response to increasing temperature have been observed: (1) diagenetic zone (low temperature), (2) illite-chlorite zone (above ~ 150°C), (3) calc-aluminum silicate zone (above ~ 230°C) and the biotite zone (above ~ 325°C). These zones are transitional to some degree and can be further subdivided based on the appearance or disappearance of various minerals.One immediate application of these studies is the ability, from a study of cuttings obtained during drilling of a well, to predict the temperatures which will be observed when the well is completed.  相似文献   

15.
Fluid inclusions have been studied on six calcite veins from the shallow part (480 to 1515 m below ground level) of the Larderello geothermal field and outcropping in peripheral zones of the geothermal area. Oxygen and carbon isotopic analyses have been carried out on these carbonate veins, as well as on the dolostone layers found inside the Paleozoic metamorphic units of the deep part of the field (from 1939 to 3177 m below ground level). Fluid inclusion observations suggest that boiling processes probably occurred during calcite precipitation in most of the veins. The fluids that formed or interacted with the calcite veins below the uppermost reservoir (made up of Mesozoic marine carbonates), and with the calcite hydrothermal veins of Sassa, were characterised by an apparent salinity from 1.3 to 5.3 wt.% NaCl eq. and a homogenisation temperature from 137 to 245°C. The fluid inclusions related to the calcite veins hosted above the uppermost reservoir show a wide range of apparent salinity (from 1.7 to 22.2 wt.% NaCl eq.) and homogenisation temperatures from 224 to 296°C. Apparent salinity/homogenisation temperature covariations of the latter veins are interpreted as being the result of a mixing process between a low-temperature, high-salinity fluid and a higher-temperature, moderate-salinity fluid. The oxygen isotopic compositions of the calcite veins (δ18O from 10.34 to 11.45‰) located below the Mesozoic carbonates and in the outcrops (δ18O from 9.42 to 17.07‰) indicate that the vapour in equilibrium with these veins was isotopically similar to the present-day discharge steam. The aqueous fluids in equilibrium with these veins could be meteoric water that interacted with the Mesozoic carbonates of the upper reservoir. The δ13C values of the CO2 produced at Larderello and the constant concentration of this gas over time are, however, indicative of a deep source inside the reservoir that is probably related to the decarbonation reaction within the metamorphic units that form the present-day deep reservoir. Fluid inclusion salinities (up to 22.2 wt.% NaCl eq.) and isotopic results (δ18O from 13.43 to 21.99‰, δ13C between −1.26 and −0.18‰) on the calcite veins hosted above the uppermost reservoir suggest that the water circulating in these veins has strongly interacted with Mesozoic carbonates or Neogene sediments containing evaporite layers. The isotopic values (δ18O from 14.09 to 19.91‰, δ13C from −4.09 to 1.90‰) of dolomite samples present in the Paleozoic metamorphic rocks indicate a reaction with fluid of variable temperatures under different water/rock ratios. The isotopic composition of one sample reveals equilibrium with present-day discharge fluids. This fact aside, the remaining data indicate that the Paleozoic dolomitic layers do not seem to contribute significantly to the production of CO2.  相似文献   

16.
Scanning electron microscopy-cathodoluminescence (SEM-CL) imaging of hydrothermal quartz exposed by weathering in the Te Kopia geothermal field (New Zealand) has revealed a history of crystal growth, dissolution, overprinting and fracturing that cannot be detected using other observational techniques (e.g. transmitted or reflected light microscopy, back-scattered electron imaging or secondary electron imaging). The crystals initially grew as CL-dark quartz, at least 350 m below their present location on the Paeroa Fault scarp, in a neutral pH, 215±10 °C liquid reservoir (inferred from the analysis of primary liquid fluid inclusions: mean Th of 213 °C; 0.2–0.4 wt.% NaCleq.). Relict quartz–adularia–illite alteration occurs at the surface, in the vicinity of the quartz crystals, and in drillcores from the nearby TK-1 exploration well. Repeated movement on the Paeroa Fault uplifted pyroclastic rocks hosting the quartz crystals, but also provided pathways for “pulses” of hot fluids to move through the system. Quartz precipitation occurred at the edge of the crystals as the reservoir fluids cooled, as indicated by micron-scale alternating CL-dark/CL-bright quartz growth bands, which contain fluid inclusions with Th values of 210±40 °C. Pressure fluctuations were the likely cause of dissolution, marked by corroded crystal edges, with subsequent precipitation of quartz into open space. SEM-CL imaging shows that the quartz crystals contain healed fractures, which trapped low salinity fluids with Th values of 201±6 °C. Low-pH fluids in the near-surface setting also rounded the quartz crystals, and coated them with kaolinite and CL-grey amorphous “silica residue”.  相似文献   

17.
Vitrinite reflectance measured in immersion oil (Ro) on kerogen extracted from hydrothermally altered mudstones in borehole M-84 at the Cerro Prieto geothermal field exhibit an increase in mean reflectance ( ) from 0.12 per cent at 0.24 km depth to 4.1 per cent at 1.7 km depth. Downhole temperatures measured over this interval increase from about 60° to 340°C. These data plotted against temperature fall along an exponential curve with a coefficient of determination of about 0.8. Other boreholes sampled in the field show similar relationships. A regression curve calculated for temperature and in borehole M-105 correctly predicts temperatures in other boreholes within the central portion of the geothermal system. The correlation between the reflectance values and logged temperature, together with consistent temperature estimates from fluid inclusion and oxygen isotope geothermometry, indicates that changes in are an accurate and sensitive recorder of the maximum temperature attained. Therefore, vitrinite reflectance can be used in this geothermal system to predict the undisturbed temperature in a geothermal borehole during drilling before it regains thermal equilibrium. Although existing theoretical functions which relate to temperature and duration of heating are inaccurate, empirical temperature- curves are still useful for geothermometry.A comparison of temperature- regression curves derived from nine boreholes within the Cerro Prieto system suggests that heating across the central portion of the field occurred penecontemporaneously, but varies near margins. Boreholes M-93 and M-94 appear to have cooled from their maximum temperatures, whereas M-3 and Prian-1 have only recently been heated.Comparison of the temperature- data from the Salton Sea, California, geothermal system indicates that the duration of heating has been longer there than at the Cerro Prieto field.  相似文献   

18.
This paper investigates the integrated catalytic adsorption (ICA) steam gasification of palm kernel shell for hydrogen rich gas production using pilot scale fluidized bed gasifier under atmospheric condition. The effect of temperature (600–750 °C) and steam to biomass ratio (1.5–2.5 wt/wt) on hydrogen (H2) yield, product gas composition, gas yield, char yield, gasification and carbon conversion efficiency, and lower heating values are studied. The results show that H2 hydrogen composition of 82.11 vol% is achieved at temperature of 675 °C, and negligible carbon dioxide (CO2) composition is observed at 600 °C and 675 °C at a constant steam to biomass ratio of 2.0 wt/wt. In addition, maximum H2 yield of 150 g/kg biomass is observed at 750 °C and at steam to biomass ratio of 2.0 wt/wt. A good heating value of product gas which is 14.37 MJ/Nm3 is obtained at 600 °C and steam to biomass ratio of 2.0 wt/wt. Temperature and steam to biomass ratio both enhanced H2 yield but temperature is the most influential factor. Utilization of adsorbent and catalyst produced higher H2 composition, yield and gas heating values as demonstrated by biomass catalytic steam gasification and steam gasification with in situ CO2 adsorbent.  相似文献   

19.
Injection of spent (cooled) thermal fluids began in the Tianjin geothermal district, north-eastern China, at the end of the 1990s. Well injectivities declined after 3–4 years because of self-sealing processes that reduced reservoir permeability. The study focuses on the factors that may have caused the observed decrease in permeability, using chemical and isotopic data on fluids (water and gas) and mineral phases collected from production and injection wells. The results of data processing and interpretation indicate that (1) it is very unlikely that calcite and silica precipitation is taking place in the reservoir; (2) the Fe- and Zn-rich mineral phases (e.g. sulfides, hydroxides and silicates) show positive saturation indexes; (3) SEM and XRD analyses of filtered material reveal that the latter mineral phases are common; (4) visual observation of casings and surface installations, and of corrosion products, suggests that a poor quality steel was used in their manufacture; (5) significant quantities of solids (e.g. quartz and feldspar crystals) are carried by the geothermal fluid; (6) seasonal changes in fluid composition lead to a reduction in casing corrosion during the summer.  相似文献   

20.
For a given set of operating conditions, the hydrogen production from biomass gasification can be improved through optimization of the operating parameters and efficiencies. The present approach can predict hydrogen production via biomass gasification in a range of 10–32 kg/s from biomass (sawdust wood). The biomass is introduced to a gasifier at an operating temperature range of 1000–1500 K. Also, 4.5 kg/s of steam at 500 K is used as gasification medium. Results indicate that improvement in hydrogen production from biomass steam gasification depending on the amount of steam and quantity of biomass feeding to the gasifier as well the operating temperature. Over the range of feeding biomass, the hydrogen yield reaches 80–130 g H2/kg biomass while in the operating temperature examined, the hydrogen yield reaches 80 g H2/kg biomass. On mole basis it is found that, in the first range of H2 varies from 51 to 63% in the studied range of feeding biomass in existing 4.5 kg/s from steam while H2 gets to 51–53% in existing of 6.3 kg/s from steam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号