首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study we examine the role of transmembrane aromatic residues of the delta-opioid receptor in ligand recognition. Three-dimensional computer modeling of the receptor allowed to identify an aromatic pocket within the helices bundle which spans transmembrane domains (Tms) III to VII and consists of tyrosine, phenylalanine, and tryptophan residues. Their contribution to opioid binding was assessed by single amino acid replacement: Y129F and Y129A (Tm III), W173A (Tm IV), F218A and F222A (Tm V), W274A (Tm VI), and Y308F (Tm VII). Scatchard analysis shows that mutant receptors, transfected into COS cells, are expressed at levels comparable with that of the wild-type receptor. Binding properties of a set of representative opioids were examined. Mutations at position 129 most dramatically affected the binding of all tested ligands (up to 430-fold decrease of deltorphin II binding at Y129A), with distinct implication of the hydroxyl group and the aromatic ring, depending on the ligand under study. Affinity of most ligands was also reduced at Y308F mutant (up to 10-fold). Tryptophan residues seemed implicated in the recognition of specific ligand classes, with reduced binding for endogenous peptides at W173A mutant (up to 40-fold) and for nonselective alkaloids at W274A mutant (up to 65-fold). Phenylalanine residues in Tm V appeared poorly involved in opioid binding as compared with other aromatic amino acids examined. Generally, the binding of highly selective delta ligands (TIPPpsi, naltrindole, and BW373U86) was weakly modified by these mutations. Noticeably, TIPPpsi binding was enhanced at W274A receptor by 5-fold. Conclusions from our study are: (i) aromatic amino acid residues identified by the model contribute to ligand recognition, with a preponderant role of Y129; (ii) these residues, which are conserved across opioid receptor subtypes, may be part of a general opioid binding domain; (iii) each ligand-receptor interaction is unique, as demonstrated by the specific binding pattern observed for each tested opioid compound.  相似文献   

2.
To provide new insights into ligand-A1 adenosine receptor (A1AR) interactions, site-directed mutagenesis was used to test the role of several residues in the first four transmembrane domains of the human A1AR. First, we replaced eight unique A1AR residues with amino acids present at corresponding transmembrane (TM) positions of A2AARs. We also tested the role of carboxamide amino acids in TMs 1-4, and the roles of Val-87, Leu-88, and Thr-91 in TM3. Following conversion of Gly-14 in TM1 to Thr-14, the affinity for adenosine agonists increased 100-fold, and after Pro-25 in TM1 was converted to Leu-25, the affinity for agonists fell. After conversion of TM3 sites Thr-91 to Ala-91, and Gln-92 to Ala-92, the affinity for N6-substituted agonists was reduced, and binding of ligands without N6 substituents was eliminated. When Leu-88 was converted to Ala-88, the binding of ligands with N6 substituents was reduced to a greater extent than ligands without N6 substituents. Following conversion of Pro-86 to Phe-86, the affinity for N6-substituted agonists was lost, and the affinity for ligands without N6 substitution was reduced. These observations strongly suggest that Thr-91 and Gln-92 in TM3 interact with the adenosine adenine moiety, and Leu-88 and Pro-86 play roles in conferring specificity for A1AR selective compounds. Using computer modeling based on the structure of rhodopsin, a revised model of adenosine-A1AR interactions is proposed with the N6-adenine position oriented toward the top of TM3 and the ribose group interacting with the bottom half of TMs 3 and 7.  相似文献   

3.
Platelet-activating factor (PAF) is a potent phospholipid mediator that produces a wide range of biological responses. The PAF receptor is a member of the seven-transmembrane GTP-binding regulatory protein-coupled receptor superfamily. This receptor binds PAF with high affinity and couples to multiple signaling pathways, leading to physiological responses that can be inhibited by various structurally distinct PAF antagonists. We have used site-directed mutagenesis and functional expression studies to examine the role of the Phe97 and Phe98 residues located in the third transmembrane helix and Asn285 and Asp289 of the seventh transmembrane helix in ligand binding and activation of the human PAF receptor in transiently transfected COS-7 cells. The double mutant FFGG (Phe97 and Phe98 mutated into Gly residues) showed a 3-4-fold decrease in affinity for PAF, but not for the specific antagonist WEB2086, when compared with the wild-type (WT) receptor. The FFGG mutant receptor, however, displayed normal agonist activation, suggesting that these two adjacent Phe residues maintain the native PAF receptor conformation rather than interacting with the ligand. On the other hand, substitution of Ala for Asp289 increased the receptor affinity for PAF but abolished PAF-dependent inositol phosphate accumulation; it did not affect WEB2086 binding. Substitution of Asn for Asp289, however, resulted in a mutant receptor with normal binding and activation characteristics. When Asn285 was mutated to Ala, the resulting receptor was undistinguishable from the WT receptor. Surprisingly, substitution of Ile for Asn285 led to a loss of ligand binding despite normal cell surface expression levels of this mutant, as verified by flow cytometric analysis. Our data suggest that residues 285 and 289 are determinant in the structure and activation of the PAF receptor but not in direct ligand binding, as had been recently proposed in a PAF receptor molecular model.  相似文献   

4.
Structural and functional characteristics of the disulfide motif have been determined for tear lipocalins, members of a novel group of proteins that carry lipids. Amino acid sequences for two of the six isolated isoforms were assigned by a comparison of molecular mass measurements with masses calculated from the cDNA-predicted protein sequence and available N-terminal protein sequence data. A third isoform was tentatively sequence assigned using the same criteria. The most abundant isoform has a measured mass of 17 446.3 Da, consistent with residues 19-176 of the putative precursor (calculated mass 17 445.8 Da). Chemical derivatization of native and reduced/denatured protein confirmed the presence of a single intramolecular disulfide bond in the native protein. Reactivity of native, reduced, and denatured protein with 4-pyridine disulfide and dithiobis(2-nitrobenzoic acid) indicated that access to the free cysteine is markedly restricted by the intact disulfide bridge. Mass measurements of tryptic fragments identified C119 as the free cysteine and showed that the single intramolecular disulfide bond joined residues C79 and C171. Circular dichroism indicated that tear lipocalins have a predominant beta-pleated sheet structure (44%) that is essentially retained after reduction of the disulfide bond. Circular dichroism in the far-UV showed reduced molecular asymmetry and enhanced urea-induced unfolding with disulfide reduction indicative of relaxation of protein structure. Circular dichroism in the near-UV shows that the disulfide bond contributes to the asymmetry of aromatic sites. The effect of disulfide reduction on ligand binding was monitored using the intrinsic optical activity of bound retinol. The intact disulfide bond diminishes the affinity of tear lipocalins for retinol and restricts the displacement of native lipids by retinol. Disulfide reduction is accompanied by a dramatic alteration in ligand-induced conformational changes that involves aromatic residues. The disulfide bridge in tear lipocalins is important in conferring protein rigidity and influencing ligand affinity. The disulfide bond appears highly conserved so that these findings may have implications for the entire lipocalin superfamily.  相似文献   

5.
The role of putative extracellular sequences for ligand binding in the TRH receptor was examined using deletion or substitution mutations. Each mutant receptor was transiently expressed in TRH receptor-minus GH(1)2C(1)b rat pituitary cells, and binding of 4 Nu Mu [3H]pGlu-N(tau)-MeHis-Pro-NH2 ([3H] MeTRH) was measured. When binding was not detected, signal transduction at 10 microM MeTRH was measured to assess receptor expression. Deletion of most of the N-terminal sequences (Glu(2)-Leu(22)), including two potential glycosylation sites, had no effect on the affinity of the receptor for MeTRH. Segmental deletions or simultaneous substitution of multiple amino acid residues in the first, second, or third extracellular loop (EL1, EL2, or EL3) resulted, however, in total loss of [3H]MeTRH binding, suggesting important roles for the loop sequences in either receptor expression or ligand binding. Individual substitutions were made to test further the role of the specific extracellular loop sequences in TRH binding. In EL1, conversion of Tyr93 to Ala resulted in more than 20-fold decrease in affinity for MeTRH. In EL2 and the top portion of the fifth transmembrane helix, conversion of Tyr181 to Phe, Tyr188 to Ala, and Phe199 to Ala resulted in a large ( > 100-fold) decrease in affinity for MeTRH, and conversion of Tyr 188 to Phe and Phe196 to Ala caused an agonist-specific 4- to 5-fold decrease in affinity. In EL3, conversion of Asn289 to Ala and of Ser290 to Ala caused a large ( > 100-fold) decrease in affinity for MeTRH. These results suggest important roles for the extracellular loops in high affinity TRH binding and lead us to propose a model in which TRH binds to the extra-cellular domain of its receptor.  相似文献   

6.
Mapping of the conserved sequence regions in the restriction endonucleases MunI (C/AATTG) and EcoRI (G/AATTC) to the known X-ray structure of EcoRI allowed us to identify the sequence motif 82PDX14EXK as the putative catalytic/Mg2+ ion binding site of MunI [Siksnys, V., Zareckaja, N., Vaisvila, R., Timinskas, A., Stakenas, P., Butkus, V., & Janulaitis, A. Gene (1994) 142, 1-8]. Site-directed mutagenesis was then used to test whether amino acids P82, D83, E98, and K100 were important for the catalytic activity of MunI. Mutation P82A generated only a marginal effect on the cleavage properties of the enzyme. Investigation of the cleavage properties of the D83, E98, and K100 substitution mutants, however, in vivo and in vitro, revealed either an absence of catalytic activity or markedly reduced catalytic activity. Interestingly, the deleterious effect of the E98Q replacement in vitro was partially overcome by replacement of the metal cofactor used. Though the catalytic activity of the E98Q mutant was only 0.4% of WT under standard conditions (in the presence of Mg2+ ions), the mutant exhibited 40% of WT catalytic activity in buffer supplemented with Mn2+ ions. Further, the DNA binding properties of these substitution mutants were analyzed using the gel shift assay technique. In the absence of Mg2+ ions, WT MunI bound both cognate DNA and noncognate sequences with similar low affinities. The D83A and E98A mutants, in contrast, in the absence of Mg2+ ions, exhibited significant specificity of binding to cognate DNA, suggesting that the substitutions made can simulate the effect of the Mg2+ ion in conferring specificity to the MunI restriction enzyme.  相似文献   

7.
Vasoactive intestinal peptide (VIP1 and VIP2) receptors belong to the new class II subfamily of G protein-coupled receptors. We investigated here human VIP1 and VIP2 receptors by mutating in their extracellular domains all amino acid residues that are conserved in VIP receptors but are different in other members of their subfamily. They are present in 1) the N-terminal domain, i.e., E36, I43, S64, D132 and F138 in the VIP1 receptor and E24, I31, S53, D116 and F122 in the VIP2 receptor; 2) the second extracellular loop, i.e., T288 and S292 in the VIP1 receptor and T274 and S278 in the VIP2 receptor. These residues were changed to alanine (A), and cDNAs were transfected into Cos cells. For the VIP1 receptor, no specific 125I-VIP binding could be detected in cells transfected with the E36A mutant, whereas other mutants exhibited Kd values similar to that of the wild-type receptor, with the exception of S64A, for which a 3-fold increase of Kd was observed. For the VIP2 receptor, no specific 125I-VIP binding could be observed with the E24A mutant, whereas other mutants exhibited dissociation constants similar to that of the wild-type receptor, with the exception of I31A and T274A mutants, for which a 11- and 5-fold increase of Kd was observed, respectively. cAMP production experiments provided evidence that the E36A VIP1 receptor and the E24A VIP2 receptor mutants mediated almost no response upon VIP exposure. For the I31A and T274A mutants of the VIP2 receptor and the S64A mutant of the VIP1 receptor, the EC50 values of VIP for stimulating cAMP production were increased 35, 8 and 3 times as compared with that observed for the wild-type receptor, respectively. Immunofluorescence studies indicated that all mutants were normally expressed by Cos cells. These data provide the first evidence for differences in the structure-function relationship of VIP1 and VIP2 receptors.  相似文献   

8.
The ligand binding site of neuropeptide Y (NPY) at the rat Y1 (rY1,) receptor was investigated by construction of mutant receptors and [3H]NPY binding studies. Expression levels of mutant receptors that did not bind [3H]NPY were examined by an immunological method. The single mutations Asp85Asn, Asp85Ala, Asp85Glu and Asp103Ala completely abolished [3H]NPY binding without impairing the membrane expression. The single mutation Asp286Ala completely abolished [3H]NPY binding. Similarly, the double mutation Leu34Arg/Asp199Ala totally abrogated the binding of [3H]NPY, whereas the single mutations Leu34Arg and Asp199Ala decreased the binding of [3H]NPY 2.7- and 5.2-fold, respectively. The mutants Leu34Glu, Pro35His as well as Asp193Ala only slightly affected [3H]NPY binding. A receptor with a deletion of the segment Asn2-Glu20 or with simultaneous mutations of the three putative N-terminal glycosylation sites, displayed no detectable [3H]NPY binding, due to abolished expression of the receptor at the cell surface. Taken together, these results suggest that amino acids in the N-terminal part as well as in the first and second extracellular loops are important for binding of NPY, and that Asp85 in transmembrane helix 2 is pivotal to a proper functioning of the receptor. Moreover, these studies suggest that the putative glycosylation sites in the N-terminal part are crucial for correct expression of the rY1 receptor at the cell surface.  相似文献   

9.
Scanning mutagenesis of transmembrane domain 3 of the M1 muscarinic acetylcholine receptor has revealed a highly-differentiated alpha-helical structure. Lipid-facing residues are distinguished from a patch of residues which selectively stabilise the ground state of the receptor, and from a band of amino acids extending the full length of the helix, which contribute to the active agonist-receptor-G protein complex. The most important residues are strongly conserved in the GPCR superfamily.  相似文献   

10.
Prp20/Srm1, a homolog of the mammalian protein RCC1 in Saccharomyces cerevisiae, binds to double-stranded DNA (dsDNA) through a multicomponent complex in vitro. This dsDNA-binding capability of the Prp20 complex has been shown to be cell-cycle dependent; affinity for dsDNA is lost during DNA replication. By analyzing a number of temperature sensitive (ts) prp20 alleles produced in vivo and in vitro, as well as site-directed mutations in highly conserved positions in the imperfect repeats that make up the protein, we have determined a relationship between the residues at these positions, cell viability, and the dsDNA-binding abilities of the Prp20 complex. These data reveal that the essential residues for Prp20 function are located mainly in the second and the third repeats at the amino-terminus and the last two repeats, the seventh and eighth, at the carboxyl-terminus of Prp20. Carboxyl-terminal mutations in Prp20 differ from amino-terminal mutations in showing loss of dsDNA binding: their conditional lethal phenotype and the loss of dsDNA binding affinity are both suppressible by overproduction of Gsp1, a GTP-binding constituent of the Prp20 complex, homologous to the mammalian protein TC4/Ran. Although wild-type Prp20 does not bind to dsDNA on its own, two mutations in conserved residues were found that caused the isolated protein to bind dsDNA. These data imply that, in situ, the other components of the Prp20 complex regulate the conformation of Prp20 and thus its affinity for dsDNA. Gsp1 not only influences the dsDNA-binding ability of Prp20 but it also regulates other essential function(s) of the Prp20 complex. Overproduction of Gsp1 also suppresses the lethality of two conditional mutations in the penultimate carboxyl-terminal repeat of Prp20, even though these mutations do not eliminate the dsDNA binding activity of the Prp20 complex. Other site-directed mutants reveal that internal and carboxyl-terminal regions of Prp20 that lack homology to RCC1 are dispensable for dsDNA binding and growth.  相似文献   

11.
From sequence alignments, two groups can be defined for the carbenicillin-hydrolysing beta-lactamases (CARB enzymes). One group includes the Pseudomonas-specific enzymes PSE-1, PSE-4, CARB-3, CARB-4 and also the Proteus mirabilis GN79, for which the well-conserved residue Lys 234 in all class-A beta-lactamases is changed to an arginine residue. The second group includes the enzymes PSE-3 and AER-1 which have an arginine or a lysine residue at position 165. All these enzymes also have leucine at position 68, threonine at position 104 and glycine at position 240. We engineered these mutations into the TEM-1 beta-lactamase to study their potential role in defining the substrate profile of the CARB enzymes. The mutations K234R and E240G in TEM-1 noticeably increased the hydrolysis of carboxypenicillins relative to other penicillins by approximately sixfold and twofold, respectively. The variant E240G also demonstrated an improved rate of second-generation cephalosporin and cefotaxime hydrolysis. In contrast, the substitution of Trp165 by arginine does not extend the substrate profile to alpha-carboxypenicillins nor does it noticeably modify the kinetic behavior of the enzyme. The mutations M68L and E104T do not have a large effect on the hydrolysis rate but the mutation E104T enhances the affinity of the enzyme for third-generation cephalosporins. As the mutation K234R resulted in a severe decrease in the affinity for carboxypenicillins, the double mutant E240G/K234R was constructed in an attempt to enhance the CARB character of the enzyme. Contrary to what could be expected, the additional mutation E240G for the TEM-1 K234R enzyme increases neither the catalytic constant for the carboxypenicillins nor the affinity towards these substrates. Consequently, this study strongly suggests that the three-dimensional structures of the active site of the TEM-1 enzyme and PSE-3, PSE-4 or other related enzymes are significantly different. This probably explains the discrepancy of the substrate profile between the CARB enzymes and the TEM-1 protein variants.  相似文献   

12.
In order to understand the function of the first extracellular loop of the human thyrotropin receptor (hTSHR), each of two peptides of nine amino acids was inserted into the first extracellular loop of hTSHR. hTSHR cDNA was subcloned into the eukaryotic expression vector, pRc/CMV (hTSHR/pRc/CMV). B-hTSHR/pRc/CMV, a mutant hTSHR cDNA which encodes a hydrophilic peptide insert (AGTTRRVAI) and C-hTSHR/pRc/CMV which encodes a hydrophobic peptide insert (ATVLVVPMI) between +486 Ileu and +487 Asp of hTSHR were transfected into Chinese hamster ovary cells to generate the B-1 and C-6 cell lines, respectively. Neither thyrotropin (TSH) nor thyroid stimulating antibody (TSAb) stimulated cAMP production by B-1 or C-6 cells. An 125I-TSH binding assay showed that neither cell line bound TSH. Our data demonstrated that these mutations impaired both TSH binding and cAMP production. This evidence suggests that the first extracellular loop of hTSHR may have a crucial role in the TSH- and TSAb-dependent signal transduction.  相似文献   

13.
beta2-Glycoprotein I (beta2GPI) is a phospholipid-binding serum protein with anticoagulant properties. It plays a vital role in the binding of anti-cardiolipin Abs purified from patients with autoimmune disease when assayed in a cardiolipin (CL) ELISA. Based on a three-dimensional model of beta2GPI, electrostatic calculations, and earlier peptide studies, a highly positively charged amino acid sequence, Lys282-Asn-Lys-Glu-Lys-Lys287, located in the fifth domain of beta2GPI, has been predicted to be the phospholipid binding site. We tested this hypothesis by site-directed mutagenesis of residues in the predicted phospholipid binding site and by assessing the mutants for phospholipid binding and anti-beta2GPI activity. A single amino acid change from Lys286 to Glu significantly decreased the binding of beta2GPI to CL. Double and triple mutants 2k (from Lys286, 287 to Glu286, 287), 2ka (from Lys284, 287 to Glu284, 287), and 3k (from Lys284, 286, 287 to Glu284, 286, 287) possessed no binding of Ab to beta2GPI in a CL ELISA, as well as no inhibitory activity on the binding of iodinated native beta2GPI to CL. These results indicate that the residues Lys284, Lys286, and Lys287 in the fifth domain of beta2GPI are critical for its binding to anionic phospholipids and its subsequent capture for binding of anti-beta2GPI Abs.  相似文献   

14.
The diverse biological functions of retinoic acid (RA) are mediated through retinoic acid receptors (RARs) and retinoid X receptors. RARs contain a high affinity binding site for RA which is sensitive to treatment with sulfhydryl modification reagents. In an attempt to identify which Cys residues are important for this loss of binding, we created three site-specific RARbeta mutants: C228A, C258A, and C267A. The affinity for RA of all three mutant receptors was in the range of that of the wild type protein, suggesting that none of these Cys residues are critical for RA binding. Rather, these modified Cys residue(s) function to sterically hinder RA binding; however, the modified Cys residues critical for the inhibition of binding differ depending on the reagent employed. Only modification of Cys228 is necessary to inhibit RA binding when RARbeta is modified by reagents which transfer large bulky groups while both Cys228 and Cys267 must be modified when a small functional group is transferred. These data suggest that both Cys228 and Cys267 but not Cys258 lie in the ligand binding pocket of RARbeta. However, Cys228 lies closer to the opening of the RARbeta ligand binding pocket whereas Cys267 lies more deeply buried.  相似文献   

15.
The 5-hydroxytryptamine (5-HT)1B/1D receptor subtypes are involved in the regulation of 5-HT release and have gained particular interest because of their apparent role in migraine. Although selective antagonists for both receptor subtypes recently have been developed, the receptor domains involved in the pharmacological specificity of these antagonists are defined poorly. This was investigated with a chimeric 5-HT1B/1D receptor analysis and using ketanserin as a selective antagonist of h5-HT1D (h5-HT1D) Ki = 24-27 nM) as opposed to h5-HT1B (Ki = 2193-2902 nM) receptors. A domain of the h5-HT1D receptor encompassing the second extracellular loop and the fifth transmembrane domain is necessary and sufficient to promote higher affinity binding (Ki = 65-115 nM) for ketanserin to the h5-HT1B receptor. The same domain of the h5-HT1B receptor, when exchanged in the h5-HT1D receptor, abolished high affinity binding of ketanserin (Ki = 364-1265 nM). A similar observation was made with the antagonist ritanserin and seems specific because besides the unmodified binding affinities for 5-HT and zolmitriptan, only minor modifications (2-4-fold) were observed for the agonists L 694247 and sumatriptan and the antagonists GR 127935 and SB 224289. Generating point mutations of divergent amino acids compared with the h5-HT1B receptor did not demonstrate a smaller peptide region related to a significant modification of ketanserin binding. The antagonists ketanserin and ritanserin are likely to bind the h5-HT1D receptor by its second extracellular loop, near the exofacial surface of the fifth transmembrane domain, or both.  相似文献   

16.
Based on structural comparison with other biogenic amine receptors and the histamine H2 receptor, it has been suggested that in the human histamine H1 receptor, Asp107, Thr194, and Asn198 are the residues involved in binding of histamine. We therefore used site-directed mutagenesis to investigate the roles of these three amino acid residues. Asp107 was essential for both agonist and antagonist binding. Asn198 was necessary for agonist but not for antagonist binding. Thr194 was not important for either type of binding. A good correlation was found between agonist binding and receptor activation for all the wild-type and mutant receptors. The results show that the histamine H1 receptor recognizes and is activated by histamine through the interactions of Asp107 and the amino group, and Asn198 and the imidazole ring.  相似文献   

17.
Repeated administration of diazepam for 14 days (5 mg/kg daily) resulted in a significant increase of 5-HT1A receptor density in the midbrain of the rat. Bmax values were increased from 239.6 to 684.9 fmol/mg. The affinity constants (KD) were also increased, from 0.97 to 3.01 nM/l.  相似文献   

18.
The role of individual intracellular (IC) loops linking transmembrane (TM) domains in P-glycoprotein (P-gp) function remains largely unknown. The high degree of sequence conservation of these regions in the P-gp family and other ABC transporters suggests an important role in a common mechanism of action of these proteins. To gain insight into this problem, we have randomly mutagenized a portion of TM2, the entire IC1 loop, TM3, the entire extracellular loop (EC2), and part of TM4, and analyzed the effect of such mutations on P-gp function. Random mutagenesis was carried out using Taq DNA polymerase and dITP under conditions of low polymerase fidelity, and the mutagenized segments were reintroduced in the full length mdr3 cDNA by homologous recombination in the yeast Saccharomyces cerevisiae strain JPY201. The biological activity of mutant P-gp variants was analyzed in yeast by their ability to confer cellular resistance to the antifungal drug FK506 and the peptide ionophore valinomycin, and by their ability to complement the yeast Ste6 gene and restore mating in a yeast strain bearing a null mutation [Raymond, M., et al. (1992) Science 256, 232-4] at this locus. The analysis of 782 independent yeast transformants allowed the identification of 49 independent mutants bearing single amino acid substitutions in the mutagenized segment resulting in an altered P-gp function. The mutants could be phenotypically classified into two major groups, those that resulted in partial or complete overall loss of function and those that seemed to affect substrate specificity. Several of the mutants affecting overall activity mapped in IC1; in particular we identified a segment of four consecutive mutation sensitive residues (TRLT, positions 169-172) with such a phenotype. On the other hand, we identified a cluster of mutants affecting substrate specificity within the short EC2 segment and in the adjacent portion of the neighboring TM4 domain. Expression and partial purification of a representative subset of these mutants showed that in all but two cases, loss of function was associated with loss of drug-induced ATPase activity of P-gp. Therefore, it appears that TM domains, IC and EC loops, are structurally and functionally tightly coupled in the process of drug stimulatable ATPase characteristic of P-gp.  相似文献   

19.
20.
In order to identify agonist- and antagonist-binding epitopes in the human B1 and B2 bradykinin (BK) receptors, we exploited the ability of these receptors to discriminate between peptide ligands that differ only by the absence (B1) and presence (B2) of a C-terminal Arg. This was done by constructing chimeric proteins in which specific domains were exchanged between these receptors as recently described by us (Leeb, T., Mathis, S. A., and Leeb-Lundberg, L. M. F. (1997) J. Biol. Chem. 272, 311-317). The constructs were then expressed in HEK293 and A10 cells and assayed by radioligand binding and by agonist-stimulated inositol phospholipid hydrolysis and intracellular Ca2+ mobilization. Substitution of the third transmembrane domain (TM-III) of the B1 receptor in the B2 receptor (B2(B1III)) dramatically reduced the affinities of B2-selective peptide ligands including both the agonist BK and the antagonist NPC17731. High affinity binding of both ligands to B2(B1III) was fully regained when one residue, Lys111, in TM-III of this chimera was replaced with the corresponding wild-type (WT) B2 receptor residue, Ser (B2(B1IIIS111)). Replacement of Ser111 with Lys in the WT B2 receptor decreased the affinities of BK and NPC17731 and increased the affinity of the B1-selective des-Arg10 analog of NPC17731, NPC18565. The results show that the C-terminal residue of peptide agonists and antagonists when bound to the B2 receptor is adjacent to Ser111 in the receptor. A Lys at this position, as is the case in the WT B1 receptor, provides a positive charge that repels the C-terminal Arg in B2-selective peptides and attracts the negative charge of the C terminus of B1-selective peptides, which lack the C-terminal Arg. Therefore, the residues at this one single position are crucial in determining the peptide selectivity of B1 and B2 BK receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号