首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
γ-氨基丁酸(GABA)是一种在自然界广泛存在的非蛋白质氨基酸,具有降血压、镇静安神、免疫调节等多种生理功能。许多乳酸菌能够利用其谷氨酸脱羧酶催化谷氨酸及其盐类产生GABA。产GABA的乳酸菌菌株种类较多且产量各异,主要来源于泡菜、发酵乳、干酪等酸性食品。谷氨酸脱羧酶直接决定乳酸菌合成GABA的能力,该酶的活性受到底物、辅酶、发酵pH值和发酵时间等多种因素的影响。以高产GABA的乳酸菌作为发酵剂研制富含GABA的发酵乳制品是对乳酸菌益生功能的进一步利用,具有较为广阔的市场价值。因此筛选高产GABA的乳酸菌不仅有利于相关产品的开发,也是研究产GABA乳酸菌相关性质的重要基础。  相似文献   

2.
为了发掘特色酸乳中的优质乳酸菌资源,提高菌株的γ-氨基丁酸(γ-aminobutyric acid,GABA)产量,对前期一株分离自传统酸乳中的产GABA戊糖乳植杆菌(Lactiplantibacillus pentosus,L.pentosus)Z6-15,通过单因素试验及响应面设计法优化其GABA发酵工艺。结果表明,菌株的最佳发酵工艺:葡萄糖20 g/L、酵母粉10 g/L、蛋白胨11.5 g/L、乙酸钠 5 g/L、L-谷氨酸钠(sodium hydrogen glutamate,L-MSG)4.5 g/L、K2HPO42 g/L、柠檬酸三铵 2 g/L、MnSO40.05 g/L、MgSO40.2 g/L、吐温-80 0.1%、初始pH值5.5,接种量4%、装添量175 mL,此优化条件下,菌株于37℃、160 r/min发酵培养72 h后,其GABA产量为3.96 g/L,较优化前提高了39.63%。  相似文献   

3.
从四川泡菜水中分离筛选出一株产γ-氨基丁酸(GABA)能力较强的乳酸菌W1-9,根据菌落和个体形态、生理生化指标及16S r DNA序列的系统鉴定,菌株W1-9为植物乳杆菌(Lactobacillus plantarum)。菌株W1-9在含10 g/L谷氨酸(Glu)的MRS培养基中培养3 d,可产生2.18 g/L GABA。通过对菌株发酵培养基及发酵条件优化,结果表明:以黄瓜汁为发酵培养基,初始p H 5.5,底物谷氨酸钠(MSG)添加量12 g/L,菌液接种量1.2%,在该条件下GABA产量达到7.62 g/L。  相似文献   

4.
通过对乳酸菌L-SZ303发酵产γ-氨基丁酸(γ-aminobutyric acid,GABA)的条件设计了一系列优化试验,以获得最佳的发酵条件。正交试验确定其最适培养基成分为:葡萄糖5 g/L,胰蛋白胨25 g/L,丁二酸钠3 g/L,酵母粉6 g/L,米糠5 g/L,L-谷氨酸钠4 g/L。响应面法确定最佳培养条件为:初始pH6.8,发酵温度36℃,发酵时间3 d。优化之后GABA的产量可达13.375 g/L。  相似文献   

5.
利用MRS培养基分别从牡丹江、漠河、五常的寒地黑土中筛选产γ-氨基丁酸(GABA)的乳酸菌菌株,对其做形态学观察和生理生化鉴定,并进行了发酵培养基组成的优化实验,分析比较不同碳源、氮源、碳氮比、初始pH和L-谷氨酸浓度对产GABA的影响。结果表明:共筛出五株菌株,分别编号为SbO001、SbO002、SbO003、SbO004、SbO005,可以将五株菌株初步鉴定为链球菌科(Streptococcaceae)。当发酵培养基组分碳源为葡萄糖,氮源为硫酸铵,碳氮比1:1,初始pH为5.5,底物为1%的L-谷氨酸时,菌株产GABA的能力较好,为1.112 g/L。本实验将为寒地黑土中产GABA乳酸菌的筛选提供一定的理论依据。  相似文献   

6.
使用乳酸菌发酵米糠,以菌种、菌种添加量、发酵温度、发酵时间为单因素研究其对米糠发酵液中γ-氨基丁酸(GABA)含量的影响,在最适条件下,采用混料设计法,使用混合乳酸菌发酵米糠,以发酵液中GABA含量为指标,确定乳酸菌发酵米糠的最优条件为:在混合菌种嗜热链球菌S1添加量为1.55%,保加利亚乳杆菌L1添加量为1.45%,50℃下发酵米糠14h,发酵液中GABA含量最高,为287.975mg/100g。   相似文献   

7.
韩雪  梁金钟 《食品工业科技》2012,33(20):180-183
利用BCP培养基从酸菜汁中分离出两株菌株,经多次纯化得到纯菌株,编号分别为LpL328、ST328,初筛后发现LpL328具有较好的产γ-氨基丁酸(GABA)的能力,通过形态学观察和生理生化实验初步鉴定该菌株为植物乳杆菌(Lactobacillus plantarum)。将LpL328菌株接入发酵培养基中培养,收集菌体制成丙酮干粉,利用透性细胞与底物谷氨酸钠反应生成γ-氨基丁酸(GABA),通过比色法测定出LpL328转化GABA的产率为2.16g/L。  相似文献   

8.
目的研究香菇柄经过乳酸菌发酵后主要营养成分的变化。方法采用乳酸菌为菌种发酵香菇柄,与未添加乳酸菌的香菇柄作比较,测定发酵前后主要营养成分的含量,并用高效液相色谱法检测膳食纤维的单糖组成。结果与发酵前相比,香菇柄经过发酵后总糖、不溶性膳食纤维含量下降,总膳食纤维、蛋白质的含量上升,尤其是可溶性膳食纤维和总酸含量显著上升(P0.05),分别提高了2.13倍和2.71倍;可溶性膳食纤维的单糖组成种类无变化,其中,葡萄糖、木糖、甘露糖含量增加,半乳糖含量减少;水解氨基酸的种类无变化,总量略有提高,除赖氨酸外,各水解氨基酸经过发酵后含量均未有减少;游离氨基酸总量减少了31.72%,但部分游离氨基酸含量有所增加,呈味氨基酸组成发生变化,酸味氨基酸、鲜味氨基酸、芳香味氨基酸含量均有提高。结论本研究为开发乳酸菌发酵香菇柄的香菇制品提供理论依据。  相似文献   

9.
以藜麦为主要材料,探究低温胁迫联合乳酸菌发酵对藜麦γ-氨基丁酸(γ-aminobutyric acid,GABA)含量的影响。通过单因素和正交试验,分别对低温胁迫藜麦萌发过程以及乳酸菌发酵过程关键因素进行工艺优化。结果表明:在低温胁迫藜麦萌发过程中胁迫温度为-7℃、胁迫时间为5 h、发芽温度为35℃、发芽时间为18 h时,藜麦萌发后GABA含量可达1.71 mg/g,对发芽藜麦进行乳酸菌发酵,在接种量为2.0%、发酵温度为32℃、发酵时间为18 h时,发酵后藜麦GABA含量可达2.45 mg/g。研究表明低温胁迫联合乳酸菌发酵可有效提高藜麦GABA含量。  相似文献   

10.
生物合成γ-氨基丁酸的乳酸菌的筛选   总被引:19,自引:1,他引:19  
γ-氨基丁酸(GABA)具有降血压、提高脑活力、改善更年期综合症等生理活性,GABA的生物合成主要采用大肠杆菌为菌种。通过筛选微生物,尝试利用乳酸菌生物合成γ-氨基丁酸,得到一株食品安全(GRAS)乳酸菌SYFS1.009,利用该菌株表现出较高的合成GABA活性,通过发酵技术可以获得较高含量的γ-氨基丁酸产品。  相似文献   

11.
以浆水作为菌株分离源,分离筛选产γ-氨基丁酸(GABA)乳酸菌,采用薄层层析法和高效液相色谱法定性定量分析GABA,并对筛选菌株进行形态学观察、生理生化试验及分子生物学种属鉴定、发酵特性分析及发酵条件优化。结果表明,共分离筛选出21株乳酸菌,具有产GABA能力的有6株,经鉴定其中5株为植物乳杆菌(Lactobacillus plantarum),1株为发酵乳杆菌(Lactobacillus fermentans)。选取GABA产量最高的一株植物乳杆菌,编号为2,通过单因素试验及响应面试验确定其最适发酵条件为:初始 pH值5.8,发酵温度36 ℃,发酵时间60 h。在此优化条件下,GABA产量可达0.78 g/L,比优化前产量(0.22 g/L)提高约3.5倍。  相似文献   

12.
为从豆豉中获得产γ-氨基丁酸的乳酸菌,采用高效液相色谱法对从广西黄姚豆豉中分离筛选得到的16株乳酸菌的产γ-氨基丁酸能力进行了研究。结果表明:菌株HY15的产γ-氨基丁酸能力较好。该菌株在含1%(W/W)谷氨酸钠的MRS发酵培养基中37℃厌氧培养48h后,发酵液中γ-氨基丁酸产量达到0.161g/L。经形态学特征、生理生化试验和16SrDNA基因鉴定,确定菌株HY15为戊糖片球菌(Pediococcus pentosaceus)。  相似文献   

13.
从不同泡菜中筛选到6株产γ-氨基丁酸(GABA)的乳酸菌,其中A号乳酸菌产量相对较高,GABA产量为1.261 g/L。A号菌株经16S rDNA鉴定为植物乳杆菌,初步命名为Lactobacillus plantarum WZ011。通过单因素和正交设计方法对其发酵培养基进行优化,得到最佳培养基成分(g/L):葡萄糖13,酵母膏5,谷氨酸钠12,盐酸吡哆醇0.15,无水乙酸钠2,MgSO4.7H2O 0.02,MnSO4.4H2O 0.001,FeSO4.7H2O 0.001,NaCl 0.001。Lactobacillus plantarum WZ011发酵动力学曲线表明GABA的发酵过程大致分为菌体生长与产物生成2个阶段。降低培养基的氮源含量和添加盐酸吡哆醇,谷氨酸钠的利用率提高至99%且GABA生产速率提高了2倍多。优化后GABA最高产量可达5.814 g/L,比优化前提高了79%,且提前了48 h进入GABA生产稳定期。  相似文献   

14.
通过实测多项物化指标研究酶解化香菇柄超微粉的物化性能,包括粒度、膨胀性、持水力、持油力、亚硝酸根吸附力、溶解度、吸湿率、堆密度等。结果显示:香菇柄超微粉平均粒度18.5μm;平均膨胀力为13.33 m L/g,平均膨胀率为776%;平均持水力为2.545 g/g;平均持油力为0.189 g/g;对亚硝酸根离子的吸附量为0.538 mg/g;溶解度(g/100 g)为4(25℃)与3.2(100℃);吸湿率基本成直线上升趋势,第5天吸湿率达到22.7%;平均堆密度(g/m L)0.458。与对照(香菇柄普通粉,粒度为80目,相当于175μm)相比,有如下差异:膨胀力高5.23 m L/g、提高率为64.6%,膨胀率高582%、提高率为300%;持水力差异不明显;持油力降低86.5%;亚硝酸根的吸附能力是普通粉的8倍;溶解度远大于普通粉,常温(25℃)下前者是后者的2.4倍,100℃时可达8倍。  相似文献   

15.
高产γ-氨基丁酸乳酸菌的筛选及鉴定   总被引:3,自引:0,他引:3  
利用MRS选择性培养基,从酸菜、泡菜等中分离出6株产γ-氨基丁酸的乳酸菌,经过复筛得到γ-氨基丁酸高产菌株F13、F14和F15.这3株菌在含有10g/L谷氨酸钠的发酵培养基中33℃培养60h,发酵液中γ-氨基丁酸含量分别达到5.72g/L、5.01g/L和4.98g/L.根据乳酸菌的形态特征和生理生化特征,初步鉴定这3株菌分别为短乳杆菌、嗜酸乳杆菌、植物乳杆菌.  相似文献   

16.
产γ-氨基丁酸乳酸菌的分离筛选   总被引:9,自引:0,他引:9  
从土壤、泡菜、酸奶等样品中分离、筛选出产γ-氨基丁酸(GABA)的乳酸菌,获得较高产GABA的乳酸菌6#菌株,利用HPLC-ELSD检测法精确测定出乳酸菌6#发酵样品中GABA的含量达到0.463g/L,并对此菌株进行了初步的鉴定.  相似文献   

17.
以短乳杆菌BS2为研究对象,根据已优化的培养条件,使用15L发酵罐进行分批及分批补料发酵实验,在严格控制条件下观察γ-氨基丁酸(GABA)的生物转化过程,克服摇瓶发酵的不足。采用初始pH值为5,发酵期间不控制pH值的条件下进行分批发酵;而后通过发酵期间控制pH值为5的条件下再次进行分批发酵,GABA含量得到有效提高,而谷氨酸钠和葡萄糖分别在32h和44h基本耗尽;然后采用初始pH值为5,发酵期间控制pH值不变的条件下分别在32h补入谷氨酸钠,44h补入葡萄糖,其中,补加550g/L葡萄糖200mL,630g/L谷氨酸钠200mL。补料发酵时,两者流加速度均为11.1mL/min,流加18min。流加结束后培养基中葡萄糖和谷氨酸钠含量达到18g/L以上,基本达到在初始发酵时的质量浓度,而谷氨酸钠在56h基本耗尽,GABA产量达到22.5g/L,最后在56h第2次补加谷氨酸钠,操作同上,GABA产量在104h达到33g/L以上。  相似文献   

18.
γ-氨基丁酸(Gamma aminobutyric acid,GABA)是一种天然活性成分,广泛分布于动植物体内。介绍了GABA的生理功能、制备方法、技术原理、在食品工业中的应用、市场需求分析以及在产业链发展中的地位与作用。对米糠进行深加工,制成富集GABA食品,实现了米糠资源的综合利用。作为新资源食品,对GABA的活性成分的进一步研究,具有巨大的发展潜力和应用价值。  相似文献   

19.
李文  董明盛 《食品科学》2018,39(16):147-153
采用复合诱变的方式提高乳酸菌发酵鹰嘴豆乳产γ-氨基丁酸(γ-aminobutyric acid,GABA)的能力,为开发富含GABA的功能性食品打下基础。以植物乳杆菌M-6作为出发菌株,分别进行紫外、紫外-氯化锂复合诱变,确定紫外照射最佳时间为240 s,氯化锂最佳质量分数为1.25%。采用谷氨酸钠(monosodium glutamate,MSG)平板法、纸层析法、berthelot比色法和高效液相色谱法对突变株的产GABA特性进行检测,筛选到21?株GABA产量高于出发菌株的菌株,其中紫外-氯化锂诱变所得突变株UL-4产量最高,在MRSG培养基(含1%?MSG)和鹰嘴豆乳(含0.2%?MSG)里的产量分别为899.27?mg/L和369.53?mg/L,比出发菌株分别提高64.25%和30.46%,具有良好的遗传稳定性。  相似文献   

20.
在利用乳酸茵Lactococcus lactis 1.009细胞中的谷氨酸脱羧酶转化制备γ-氨基丁酸(GABA)的过程中,探讨了茵体浓度、缓冲液种类及浓度、转化时间、茵龄、磷酸吡哆醛添加量、底物添加方式等因素对GABA产量的影响.结果表明,细胞转化法制备GABA的最佳条件为:菌体浓度10g/L,茵龄14h,缓冲液为0.2mol/L pH4.7的醋酸缓冲液,PLP的添加量为0.Immol/L.通过多次分批添加谷氨酸,50℃下反应60h后,GABA的积累量可迭19.1g/L,转化率为99.9%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号