首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to investigate the effects of argon and oxygen on diamond synthesis, the behaviors of diamond deposition using microwave plasma chemical vapor deposition method have been studied by varying the concentrations of argon and oxygen in the methane-hydrogen gas mixture. Diamond films were deposited on silicon wafer under the conditions of substrate temperatures: 1073 1173 K, total reaction pressure: 5333 Pa (40 Torr), methane concentrations: 0.5 5.0%, and they were characterized by scanning electron microscopy, Raman spectroscopy and optical emission spectroscopy. The deposition rates of diamond films were enhanced by adding argon into the methane-hydrogen system, but nondiamond carbon phases in the films also increased. It resulted from the increase of hydrocarbon radicals in the plasma. As oxygen was added, the quality of deposited diamond films was improved due to the decrease of C2 radicals and increase of OH radicals in the plasma. Simultaneous addition of 0.3% oxygen and 20% argon has been able to effectively suppress the formation of nondiamond carbon components and increase the deposition rate of diamond films. It appears that the ionized argon (Ar+) and excited argon atoms (Ar*) may activate the various chemical species and promote the reactions between the gas phase species and oxygen in the plasma.  相似文献   

2.
We have studied diamond films grown by electron cyclotron resonance (ECR)-assisted chemical vapor deposition (CVD) on Si (100) substrates seeded with diamond, boron nitride and unseeded. Relatively low temperatures (550–710°C) and low pressures (1–2 Torr) were employed. Raman spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) were used to characterize the crystalline quality, diamond yield, and stresses developed in these films. Most of the diamond films exhibit a Raman blue-shift with respect to natural diamond, indicating that the net stress is compressive. However, this net stress is significantly more compressive than the one estimated by taking into account the thermal interfacial stress and the stress developed at the grain boundaries. In addition, this net stress exhibits an inverse correlation with diamond yield, and a direct correlation with crystalline quality. These results were interpreted in terms of the critical interplay between the supply of precursor species to the growing surface and the surface mobility of adsorbed species. The excess (or intrinsic) compressive stress shows an inverse correlation with diamond crystalline quality, indicating that the creation of point defects serves as a stress-relieving mechanism. Seeding effects, in general, are deleterious to diamond quality, in this temperature and pressure regime studied. Seeding with boron nitride had the effect of reversing the net stress from compressive into tensile, but this effect was rapidly lost as the diamond yield increased.  相似文献   

3.
叶勤燕  王兵  甘孔银  李凯  周亮  王东 《材料导报》2012,26(6):38-40,44
掺硼金刚石薄膜具有负电子亲和势和良好的电子运输性能且容易制备,作为冷阴极材料在图像显示技术和真空技术等领域都存在巨大的应用价值,引起人们的广泛关注。采用MPCVD法利用氢气、甲烷和硼烷的混合气体,制备出不同浓度的掺硼金刚石薄膜。结果表明,掺硼浓度影响金刚石薄膜的物相结构、组织形貌,进而影响其二次电子发射性能,当硼烷的流量为4mL/min时,制备的金刚石薄膜质量最好,二次电子发射系数约为90。  相似文献   

4.
硼硫共掺杂金刚石薄膜的研究   总被引:2,自引:0,他引:2  
利用微波等离子体化学气相沉积(MPCVD)技术,以丙酮为碳源.用二甲基二硫和三氧化二硼作掺杂源.在硅衬底上制备了硼与硫共掺杂的金刚石薄膜。用俄歇谱分析金刚石薄膜中硫的含量.用傅里叶红外光谱(FTIR)分析了薄膜表面键结构.用扫描电子显微镜(SEM)观测薄膜的表面形貌.X射线衍射(XRD)和喇曼(Raman)光谱表征膜层的结构。结果表明:微量硼的加入促进硫在金刚石中的固溶度,使硫在金刚石中的掺杂率提高了近50%;随着薄膜中硫含量的增加.薄膜的导电性增加,当薄膜中硫含量达到0.15%(原子分数)时其导电激活能为0.39eV。  相似文献   

5.
A selective oxidation technique for diamond films based on the extended exposure to UV light in air at room temperature was developed and studied by Raman Spectroscopy and Scanning Electron Microscopy. The diamond films were synthesized by the combustion flame technique in open atmosphere by using an oxy-acetylene gas mixture as the carbon source. A 125 W UV lamp was used to irradiate the films in the wavelength range of 180–250 nm, from 2 to 10 days. The Raman spectrum from the as-deposited diamond films shows the typical band at 1333 cm–1, characteristic of the sp 3diamond structure, with a certain nondiamond or graphite content. After UV irradiation, graphite was selectively oxidized and partially removed without oxidation of diamond, indicating that the strong reaction of ozone (O3) and atomic oxygen (O·) produced by the UV irradiation oxidized the graphite, even at room temperature, without the need of an additional heating source. The oxidation of graphite was best observed after 2 days of UV treatment. A sensible improvement in the diamond film quality was obtained after 2 days of irradiation, as revealed by the sharpening of the corresponding Raman band.  相似文献   

6.
利用热灯丝CVD法在硅衬底上合成出了金刚石膜。金刚石膜的质量和电子性质由扫描电子显微镜、拉曼谱、阴极发光及霍尔系数测量来表征。实验结果表明,沉积条件对金刚石膜电子性质和质量有重要影响。载流子迁移率随甲烷浓度增加而减少,但场发射随其增加而增强。压阻效应随微缺陷增多而降低。异质外延金刚石膜压阻因子在室温下100微形变时为1200,但含有大量缺陷的多晶金刚石膜压阻因子低于200,这是由于薄膜中缺陷态密度增加,并依赖于膜结构的变化。  相似文献   

7.
Two series of diamond films grown—at different temperatures—by two chemical vapor deposition (CVD) methods, i.e., hot filament (HFCVD) and microwave-plasma (MPCVD), were investigated. Raman spectroscopy and scanning electron microscopy were employed to perform a study of both crystalline quality and phase purity of the films grown by the two techniques. It was found that high phase purity can be attained by both methods. However, at high temperatures, the MPCVD technique produced films with higher crystalline quality as compared to those grown by HFCVD. Finally, in order to shed some light into the mechanisms responsible for the lower crystalline quality observed in the HFCVD films, a study based in the phonon confinement model and stress was accomplished.  相似文献   

8.
Field emission from diamond and diamond-like carbon thin films deposited on silicon substrates has been studied. The diamond films were synthesized using hot filament chemical vapor deposition technique. The diamond-like carbon films were deposited using the radio frequency chemical vapor deposition method. Field emission studies were carried out using a sphere-to-plane electrode configuration. The results of field emission were analyzed using the Fowler-Nordheim model. It was found that the diamond nucleation density affected the field emission properties. The films were characterized using standard scanning electron microscopy, Raman spectroscopy, and electron spin resonance techniques. Raman spectra of both diamond and diamond-like films exhibit spectral features characteristic of these structures. Raman spectrum for diamond films exhibit a well-defined peak at 1333cm?1. Asymmetric broad peak formed in diamond-like carbon films consists of D-band and G-band around 1550 cm?1 showing the existence of both diamond (sp3 phase) and graphite (sp2 phase) in diamond-like carbon films.  相似文献   

9.
Highly boron-doped diamond films were deposited on silicon substrate by hot filament chemical vapor deposition in a gas mixture of hydrogen and methane. The chemical bonding states, surface texture, and electrical resistivity of these films were analyzed by X-ray photoelectron spectroscopy, scan electron microscope, and four-point probe method. It was found that boron dopants play an important role in the texture and chemical bonding states of the diamond films. An appropriate concentration of boron dopants (B/C ratio of 10 000 ppm) can simultaneously improve crystal quality and reduce resistivity of the diamond films. The minimum resistivity of diamond films reaches 1.12 × 10−2 Ω cm, which is applicable as electrodes.  相似文献   

10.
纳米金刚石薄膜具有优异的性能,已在多个领域获得广泛应用.但微波等离子体化学气相沉积制备的金刚石薄膜质量却严重受沉积工艺的影响,为了深入了解沉积工艺对制备的金刚石薄膜质量的影响,本文详细研究了甲烷浓度对微波等离子体化学气相沉积( MPCVD)金刚石薄膜质量的影响,利用扫描电镜、X射线衍射、拉曼光谱以及原子力显微镜对其进行...  相似文献   

11.
采用微波等离子体化学气相沉积(MPCVD)法在附有SiO2掩摸的硅衬底上选择性沉积出了金刚石膜。采用扫描电子显微镜(SEM)和Raman光谱仪对金刚石膜的表面形貌和结构进行了表征。并讨论了衬底温度对金刚石薄膜选择性沉积的影响。得出了较佳的沉积条件。  相似文献   

12.
Abstract

The mechanical properties of diamond films deposited via hot filament chemical vapour deposition have been determined using a range of techniques, and related to the composition and morphology of the diamond films as determined by laser Raman spectroscopy. As the quality of the film increases, its hardness (as determined by the volume law of mixtures hardness model) also increases until it is larger than values often reported for polycrystalline bulk material, a consequence of the very small grain size in the films. Coating adhesion, as determined from indentation adhesion tests, also appears to improve with coating quality. Variations in the behaviour of the friction coefficient between diamond films and diamond and steel counterfaces are less well defined, but it appears that the surface morphology of the film is important in dictating the behaviour rather than the quality of the diamond. These results are discussed in the context of the potential use of diamond coatings in tribological applications.

MST/1695  相似文献   

13.
无支撑、光学级MPCVD金刚石膜的研制   总被引:1,自引:0,他引:1  
利用引进的6 kW微波等离子体化学气相沉积设备,进行了无支撑金刚石膜工艺的初步研究。在800~1050℃的基片温度范围内,金刚石膜都呈(111)择优取向;基片相对位置对沉积较大面积、光学级金刚石膜至关重要。制出0.25 mm厚Φ50 mm的无支撑金刚石膜。拉曼光谱和X射线衍射分析表明,合成的金刚石膜晶体结构完整,sp2含量极低;透过率测试结果说明了优良的光学性能:截止波长225 nm,光学透过率(λ≥2.5μm)≥70%。  相似文献   

14.
系统研究了CVD金刚石薄膜成膜过程中生长温度对薄膜质量、生长率和力学性能的影响。研究结果表明:在典型沉积条件下,生长温度愈高、薄膜的晶体质量愈好;但薄膜的应力状况和附着性能变坏;在800℃时,金刚石薄膜的生长速率最大。讨论了CVD金刚石薄膜作为机械工具涂层的最佳生长温度。  相似文献   

15.
X.J. Hu  J.S. Ye  S. Mariazzi 《Thin solid films》2008,516(8):1699-1702
Doppler broadening measurements were performed on undoped, boron doped, and sulfur doped diamond films. The defect properties in these different diamond films were analyzed and the effect of boron concentration in the B-doped diamond films on these properties was studied. The Doppler broadening measurements were characterized with the shape parameter S and the wing parameter W. From these fitted characteristic S and W values of the diamond films and plots of S vs. position implantation energy, it was deduced that undoped and S-doped diamond films are rich of vacancy-like defects, while B-doped diamond films are poor of vacancy-like defects. This difference may originate from possible different charge state of the vacancy-like defects and from the incorporation of impurities in the different growth ambient of the films. By comparing the parameters obtained in the Doppler broadening measurements of diamond films with different boron concentration, we found that S values of B-doped diamond did not decreased with the increasing of boron concentration, which suggests that more damaged regions form in the higher boron concentration samples.  相似文献   

16.
硼磷共掺杂n型金刚石薄膜的Hall效应、红外光谱和EPR研究   总被引:1,自引:0,他引:1  
用离子注入方法,在CVD金刚石薄膜中共注入硼离子和磷离子,得到了电阻率较低的n型金刚石薄膜。Hall效应测试表明,800℃退火后,在注入的磷离子剂量相同的情况下,共注入硼的金刚石薄膜的载流子浓度与单一掺磷的相近,但Hall迁移率高,电阻率低。FTIR结果表明B-H结的形成钝化了硼的受主特性,使磷的施主特性没有被补偿,共掺杂薄膜中载流子浓度没有大幅度减少。EPR和Raman测试结果证实了较高温度退火后的共掺杂薄膜的晶格结构比单掺杂薄膜的更完整,从而有利于提高载流子迁移率,降低电阻率。  相似文献   

17.
It is important to understand the growth of CNT-diamond composite films in order to improve the inter-link between two carbon allotropes, and, in turn, their physical properties for field emission and other applications. Isolated diamond particles, continuous diamond thin films, and thin films of carbon nanotubes (CNTs) having non-uniformly distributed diamond particles (CNT-diamond composite films) were simultaneously grown on unseeded, seeded, and catalyst pre-treated substrates, respectively, using a large-area multi-wafer-scale hot filament chemical vapor deposition. Films were deposited for four different growth durations at a given deposition condition. The changes in surface morphology and growth behavior of diamond particles with growth duration were investigated ex situ using field emission scanning electron microscopy and 2D confocal Raman depth spectral imaging, respectively. A surface morphological transition from faceted microcrystalline nature to nanocrystalline nature was observed as a function of growth duration in the case of isolated diamond particles grown on both unseeded and catalyst pre-treated substrates. However, such a morphological transition was not observed on the simultaneously grown continuous diamond thin films on seeded substrates. 2D confocal Raman depth spectral imaging of diamond particles showed that the local growth of CNTs did not affect the growth behavior of neighboring diamond particles on catalyst pre-treated substrates. These observations emphasize the importance of surface chemical reactions at the growth site in deciding sp2 or sp3 carbon growth and the final grain size of the diamond films.  相似文献   

18.
GaN films with highly c-axis preferred orientation are deposited on free-standing thick diamond films by low temperature electron cyclotron resonance plasma enhanced metal organic chemical vapor deposition (ECR-PEMOCVD). The TMGa and N2 are applied as precursors of Ga and N, respectively. The quality of as-grown GaN films are systematically investigated as a function of deposition temperature by means of X-ray diffraction (XRD) analysis, Hall Effect measurement (HL), room temperature photoluminescence (PL) and atomic force microscopy (AFM). The results show that the dense and uniformed GaN films with highly c-axis preferred orientation are successfully achieved on free-standing diamond substrates under optimized deposition temperature of 400 °C, and the room temperature PL spectra of the optimized GaN film show a intense ultraviolet near band edge emission and a weak yellow luminescence. The obtained GaN/diamond structure has great potential for the development of high-power semiconductor devices due to its excellent heat dissipation nature.  相似文献   

19.
The undoped, polycrystalline diamond films were deposited on tungsten wire substrates by hot filament chemical vapor deposition (HF CVD), using a precursor gas mixture of methanol with excess of hydrogen. The morphology and quality of the as-deposited films were monitored by scanning electron microscopy (SEM) and Raman spectroscopy. The surface morphology analyzed by SEM resembles a continuous and well faceted diamond film. Raman results showed essential differences in qualities of diamond films grown at different hydrocarbon concentrations. The electrochemical properties of diamond electrodes were examined with cyclic voltammetry (CV) and the electrochemical impedance spectroscopy (EIS). The CV experiments revealed a large chemical window (>~4.3 V) of undoped diamond. Analysis of the ferrocyanide-ferricyanide couple at a diamond electrode suggests some extent of electrochemical quasi-reversibility, but the rates of charge transfer across the diamond substrate interface vary with diamond quality.  相似文献   

20.
A newly developed process called time-modulated chemical vapour deposition (TMCVD) was employed to deposit smooth polycrystalline diamond films onto silicon substrates using both microwave plasma CVD (MPCVD) and hot-filament CVD (HFCVD) systems. The distinctive feature of the TMCVD process, which separates it from the conventional diamond CVD process, is that it pulses methane (CH4) at different flow rates for different time durations into the vacuum reactor during the entire diamond CVD process. Generally, both MPCVD and HFCVD systems produced results that displayed similar trends, except that the growth rate results obtained using the two CVD systems were conflicting. In comparison to the conventional CVD diamond films, the time-modulated films, deposited using both MPCVD and HFCVD techniques, were generally found to be (i) smoother, (ii) consisted of smaller diamond crystallites and (iii) displayed approx. similar film quality. The diamond-carbon phase purity of the as-grown films was assessed using Raman spectroscopy. In addition, the surface roughness, Ra, values of the deposited films were obtained using surface profilometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号