首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Yanwei Huang 《Thin solid films》2010,518(8):1892-8340
Tungsten-doped tin oxide (SnO2:W) transparent conductive films were prepared on quartz substrates by pulsed plasma deposition method with a post-annealing. The structure, chemical states, electrical and optical properties of the films have been investigated with tungsten-doping content and annealing temperature. The lowest resistivity of 6.67 × 10− 4 Ω cm was obtained, with carrier mobility of 65 cm2 V− 1 s− 1 and carrier concentration of 1.44 × 1020 cm− 3 in 3 wt.% tungsten-doping films annealed at 800 °C in air. The average optical transmittance achieves 86% in the visible region, and approximately 85% in near-infrared region, with the optical band gap ranging from 4.05 eV to 4.22 eV.  相似文献   

2.
Searching the many papers reporting on the optical characteristics of tin oxide thin films, an obvious question arises: what is the origin of the very large differences in the reported optical and electrical properties of these films? The objective of the present work is to resolve this question by applying a modeling approach, simulating the refractive index of SnO, SnO2, SnO + SnO2, and porous tin oxide films in the visible range of the spectrum under various structure and composition conditions. Using the semi-empirical model of Wemple and DiDomenico for the dielectric function below the interband absorption edge of ionic and covalent solids, and the effective-medium theory of Bruggeman, the refractive indices of SnO, SnO2, several mixtures of SnO and SnO2 and various porous tin oxide films were calculated. The resulting data are compared with some published data to suggest the compositional and structural characteristics of the reported oxides. The correlation between the optical properties of the studied thin films and film composition is also indicated. It is proposed that the large spread in reported optical data is possibly a spread in the composition of the samples.  相似文献   

3.
The paper presents the optical properties of amorphous-like indium zinc oxide and indium gallium zinc oxide thin films with various In/(In + Zn) ratios obtained by Pulsed Laser Deposition. Thickness results obtained from simulations of X-ray Reflectivity and Spectroscopic Ellipsometry data were very similar. The dependence of density on stoichiometry resembles the corresponding dependence of the refractive index in the transparency range. A free carrier absorption was noted in the visible spectral range, leading to a weak absorbing thin transparent conductive oxide. On the other hand, the refractive index is smaller than those of based oxides (ZnO and In2O3), and counterbalance therefore the weak light absorption.  相似文献   

4.
Yttrium-doped hafnium oxide (YDH) films have been produced by sputter-deposition by varying the growth temperature (Ts) from room-temperature (RT) to 400 °C. The electrical and optical properties of YDH films have been investigated. Structural studies indicate that YDH films grown at Ts = RT − 200 °C were amorphous and those grown at 300-400 °C are nanocrystalline. The crystalline YDH films exhibit the high temperature cubic phase of HfO2. Spectrophotometry analysis indicates that all the YDH films are transparent. The band gap of YDH films was found to be in the range of 6.20-6.28 eV. Frequency variation of frequency dependent resistivity indicates the hopping conduction mechanism operative in YDH films. While the electrical resistivity (ρac) is ~ 1 Ω-m at low frequencies (100 Hz), ρac decreases to ~ 10− 4 Ω-cm at higher frequencies (1 MHz).  相似文献   

5.
The optical properties of Bi2V1−xMnxO5.5−x {x = 0.05, 0.1, 0.15 and 0.2 at.%} thin films fabricated by pulsed laser deposition on platinized silicon substrates were studied in UV-visible spectral region (1.51-4.17 eV) using spectroscopic ellipsometry. The optical constants and thicknesses of these films have been obtained by fitting the ellipsometric data (Ψ and Δ) using a multilayer four-phase model system and a relaxed Lorentz oscillator dispersion relation. The surface roughness and film thickness obtained by spectroscopic ellipsometry were found to be consistent with the results obtained by atomic force and scanning electron microscopy. The refractive index measured at 650 nm does not show any marginal increase with Mn content. Further, the extinction coefficient does not show much decrease with increasing Mn content. An increase in optical band gap energy from 2.52 to 2.77 eV with increasing Mn content from x = 0.05 to 0.15 was attributed to the increase in oxygen ion vacancy disorder.  相似文献   

6.
CdO doped (doping concentration 0, 1, 3 and 16 wt%) ZnO nanostructured thin films are grown on quartz substrate by pulsed laser deposition and the films are annealed at temperature 500 °C. The structural, morphological and optical properties of the annealed films are systematically studied using grazing incidence X-ray diffraction (GIXRD), energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), atomic force microscopy (AFM), Micro-Raman spectra, UV–vis spectroscopy, photoluminescence spectra and open aperture z-scan. 1 wt% CdO doped ZnO films are annealed at different temperatures viz., 300, 400, 500, 600, 700 and 800 °C and the structural and optical properties of these films are also investigated. The XRD patterns suggest a hexagonal wurtzite structure for the films. The crystallite size, lattice constants, stress and lattice strain in the films are calculated. The presence of high-frequency E2 mode and the longitudinal optical A1 (LO) modes in the Raman spectra confirms the hexagonal wurtzite structure for the films. The presence of CdO in the doped films is confirmed from the EDX spectrum. SEM and AFM micrographs show that the films are uniform and the crystallites are in the nano-dimension. AFM picture suggests a porous network structure for 3% CdO doped film. The porosity and refractive indices of the films are calculated from the transmittance and reflectance spectra. Optical band gap energy is found to decrease in the CdO doped films as the CdO doping concentration increases. The PL spectra show emissions corresponding to the near band edge (NBE) ultra violet emission and deep level emission in the visible region. The 16CdZnO film shows an intense deep green PL emission. Non-linear optical measurements using the z-scan technique indicate that the saturable absorption (SA) behavior exhibited by undoped ZnO under green light excitation (532 nm) can be changed to reverse saturable absorption (RSA) with CdO doping. From numerical simulations the saturation intensity (Is) and the effective two-photon absorption coefficient (β) are calculated for the undoped and CdO doped ZnO films.  相似文献   

7.
《Materials Research Bulletin》2013,48(11):4486-4490
Highly infrared transparent conductive ruthenium doped yttrium oxide (RYO) films were deposited on zinc sulfide and glass substrates by reactive magnetron sputtering. The structural, optical, and electrical properties of the films as a function of growth temperature were studied. It is shown that the sputtered RYO thin films are amorphous and smooth surface is obtained. The infrared transmittance of the films increases with increasing the growth temperature. RYO films maintain greater than ∼65% transmittance over a wide wavelength range from 2.5 μm to 12 μm and the highest transmittance value reaches 73.3% at ∼10 μm. With increasing growth temperature, the resistivity changed in a wide range and lowest resistivity of about 3.36 × 10−3 Ω cm is obtained at room temperature. The RYO thin films with high conductivity and transparency in IR spectral range would be suitable for infrared optical and electromagnetic shielding devices.  相似文献   

8.
We present here results on samarium oxide thin films, obtained by pulsed laser deposition and by radio frequency assisted pulsed laser deposition. Three different substrate types were used: silicon, platinum covered silicon and titanium covered silicon. The influence of the deposition parameters (oxygen pressure and laser fluence) on the structure and morphology of the thin films was studied. The substrate-thin film interface zone was investigated; the optical and electrical properties (the losses, dielectric constant and leakage currents) were also determined.  相似文献   

9.
Thin films of indium doped cadmium oxide were deposited on quartz substrate using pulsed laser deposition technique. The effect of growth temperature and partial oxygen pressure on structural, optical and electrical properties was studied. We find that the optical transparency of the films largely depends on the growth temperature, while partial oxygen pressure has virtually no effect on the transparency of the films. Electrical properties are found to be sensitive to both the growth temperature and oxygen pressure. It is observed that conductivity and carrier concentration decreases with temperature. The film grown at 200 °C under an oxygen pressure of 5.0 × 10− 4 mbar shows high mobility (155 cm2/V s), high carrier concentration (1.41 × 1021 cm3), and low resistivity (2.86 × 10− 5 Ω cm).  相似文献   

10.
P型透明导电氧化物LaCuOS的研究进展   总被引:1,自引:0,他引:1  
透明导电氧化物半导体的出现开拓了光电子器件研究的新领域,但是缺少性能良好的P型材料就限制了透明导电氧化物的利用空间。LaCuOS由于其结构、电学和光学等方面具有许多的优点,成为近年来P型半导体的研究热点。介绍了P型LaCuOS薄膜的基本性质,综述了不同的制备工艺并对其光电学与应用方面进行了研究总结。  相似文献   

11.
Cerium (5-15% by weight) doped molybdenum oxide thin films have been prepared on FTO coated glass substrate at 250 °C using sol-gel dip coating method. The structural and morphological changes were observed with the help of XRD, SEM and EDS analysis. The amorphous structure of the Ce doped samples, favours easy intercalation and deintercalation processes. Mo oxide films with 10 wt.% of Ce exhibit maximum anodic diffusion coefficient of 24.99 × 10−11 cm2/s and the change in optical transmittance of (ΔT at 550 nm) of 79.28% between coloured and bleached state with the optical density of (ΔOD) 1.15.  相似文献   

12.
Thin films of molybdenum doped indium oxide (IMO) were deposited on glass at room temperature using an in-built three-source RF magnetron sputtering. The films were studied as a function of oxygen volume percentage (O2 vol. %; ranging from 0.0 to 17.5%) in the sputtering chamber. The as-deposited amorphous films were crystallized on post-annealing. The as-deposited films are low conducting and Hall coefficients were undetectable; whereas post-annealed films possess fairly high conductivity. The lowest transmittance (11.96% at 600 nm) observed from the films deposited without oxygen increased to a maximum of 88.01% (3.5 O2 vol. %); whereas this transmittance was decreased with the increasing O2 vol. % to as low as 81.04% (15.6 O2 vol. %); a maximum of 89.80% was obtained from the films annealed at 500 °C in open air (3.5 O2 vol. %). The optical band gap of 3.80 eV obtained from the films deposited without oxygen increased with increasing O2 vol. % to as high as 3.91 eV (17.5 O2 vol. %). A maximum of 3.92 eV was obtained from the films annealed at 300 °C in N2:H2 gas atmosphere (17.5 O2 vol. %).  相似文献   

13.
Thin films of pyrene in polystyrene matrix have been prepared by spin coating technique. The concentration of polystyrene is kept constant to 1 wt.% while that of pyrene dopant varied in the range 2.30×10−4-2.30×10−1 wt.%. Thickness of the films was found to depend upon concentration of pyrene and varies from 90 to 782 nm. The results of X-ray diffraction analysis reveal the crystalline nature of the films. The optical properties were studied by absorption, excitation and fluorescence spectroscopy. The band gap energy of pyrene in polymer films was calculated from absorption results. A transition from monomer to excimer is observed with thickness variation of the films. The structured part of the spectrum is assigned to the monomer emission while the broad emission band is attributed to well known pyrene excimer-like emission.  相似文献   

14.
Nanocrystalline bismuth oxide thin films have been deposited by thermal oxidation, in air, of vacuum evaporated chopped bismuth thin films. The optical properties and adhesion have been studied. The oxidation temperature and duration were varied. As revealed by structural investigations, polycrystalline and multiphase bismuth oxide thin films were obtained. At all oxidation temperatures, monoclinic Bi2O3 is predominant. The films showed high transmittance in the visible range of spectrum. The direct band gap of the films obtained was between 2.78 eV and 3.04 eV. The refractive index observed is in the range 1.934 to 2.096. The adhesion of films was in the range 215 × 102 to 470 × 102 kgF/cm2. The values are strongly influenced by the heat treatment characteristics. It was observed that chopping helps in improving the adhesion and increasing refractive index, packing density and band gap of bismuth oxide thin films. These bismuth oxide films can have potential use in optical waveguides.  相似文献   

15.
Z.Y. Huang  P. Luo  M. Chen  S.R. Pan  D.H. Chen 《Materials Letters》2011,65(15-16):2345-2347
By the radio frequency magnetron sputtering, both un-doped and neodymium (Nd) doped ZnO thin films were grown on Si (100) substrates. The microstructure of the films has preferred c-axis growth orientation confirmed by the X-ray diffraction spectra. The crystallite size of ZnO crystallite decreases with the increasing of Nd concentration. We show that the hemocompatibility can be improved by a suitable Nd doping in the ZnO thin films. It is verified by both calculations on surface energy and interfacial tension of the sample, and experiments on the wettability, the proteins adsorption, and the platelets adhesion.  相似文献   

16.
The monomer, 2,6-diethylaniline has been used to deposit plasma polymerized 2,6-diethylaniline (PPDEA) thin films at room temperature on to glass substrates by a capacitively coupled parallel plate glow discharge reactor. A comparative analysis on the changes of morphological, structural and optical properties of as-deposited, heat treated and aged PPDEA thin films is ascertained. Scanning electron microscopy shows uniform and pinhole free surface of PPDEA thin films and no significant difference in the surface morphology is observed due to heat treatment. Electron dispersive X-ray and Fourier transform infrared spectroscopic investigations indicate some structural rearrangement in PPDEA thin films due to heat treatment. Differential thermal analysis, thermogravimetric analysis and differential thermogravimetric analysis suggest that the PPDEA is thermally stable up to about 580 K. The study on the optical absorption spectra of as-deposited, heat treated and aged PPDEA thin films of different thicknesses lead to the determination of the allowed direct and indirect transition energies ranging from 3.63 to 2.73 and 2.38 to 1.26 eV respectively. Urbach energy, steepness parameter and extinction coefficient are also assessed. It is observed that the optical parameters of as-deposited PPDEA thin films change due to heat treatment and do not change appreciably due to aging.  相似文献   

17.
We demonstrate the room temperature deposition of vanadium oxide thin films by pulsed laser deposition (PLD) technique for application as the thermal sensing layer in uncooled infrared (IR) detectors. The films exhibit temperature coefficient of resistance (TCR) of 2.8%/K implies promising application in uncooled IR detectors. A 2-D array of 10-element test microbolometer is fabricated without thermal isolation structure. The IR response of the microbolometer is measured in the spectral range 8-13 μm. The detectivity and the responsivity are determined as ∼6×105 cm Hz1/2/W and 36 V/W, respectively, at 10 Hz of the chopper frequency with 50 μA bias current for a thermal conductance G∼10-3 W/K between the thermal sensing layer and the substrate. By extrapolating with the data of a typical thermally isolated microbolometer (G∼10−7 W/K), the projected responsivity is found to be around 104 V/W, which well compares with the reported values.  相似文献   

18.
Conducting and transparent indium-doped ZnO thin films were deposited on sodocalcic glass substrates by the sol–gel technique. Zinc acetate and indium chloride were used as precursor materials. The electrical resistivity, structure, morphology and optical transmittance of the films were analyzed as a function of the film thickness and the post-deposition annealing treatments in vacuum, oxygen or argon. The obtained films exhibited a (002) preferential growth in all the cases. Surface morphology studies showed that an increase in the films' thickness causes an increase in the grain size. Films with 0.18 μm thickness, prepared under optimal deposition conditions followed by an annealing treatment in vacuum showed electrical resistivity of 1.3 × 10 2 Ωcm and optical transmittance higher than 85%. These results make ZnO:In thin films an attractive material for transparent electrodes in thin film solar cells.  相似文献   

19.
Atomic Layer Deposition has been used to deposit titanium dioxide thin films on soda-lime glass substrates. A series of films with thicknesses from 2.6 to 260 nm has been created and the film structure has been studied with X-ray diffraction. It has been observed that at a reaction temperature of 350 °C, titanium dioxide thin films initially grow as anatase but after a certain thickness, growth continues as rutile. The photoactivity and photocatalytic activity of the films have been found to reach their maximum at a film thickness of 15 nm. At this thickness, the film structure shows a small fraction of rutile crystallites in a largely anatase matrix indicating that both crystal phases are necessary for the maximum activity.  相似文献   

20.
In this study, we propose the determination of the dissolution rate of anodic aluminum oxide barrier layer, using a new, simple electrochemical setup and the transmission spectrum of alumina, recorded before and after several successive partial removals of barrier layer of the thin film. By dissolving the barrier layer and then thinning the alumina membrane, some changes appear in the optical transmission spectrum, in both experimental and calculated examples, which provide us information on the dissolution rate of alumina barrier layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号