首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
刘帅  吕知清  赵吉庆  杨钢  信瑞山  俞占扬 《钢铁》2022,57(5):129-136
 利用Thermo-Calc热力学软件计算了2Cr12Ni4Mo3VNbN钢中各个元素在成分范围内均为中值时的平衡相图,同时计算了2Cr12Ni4Mo3VNbN钢中碳、铬、钼、铌、氮元素含量变化时的平衡相图,以此分析钢中主要平衡析出相和合金元素含量对析出相析出行为的影响。为验证热力学计算的可靠性,采用XRD、SEM及TEM等分析方法对热处理后的2Cr12Ni4Mo3VNbN钢中析出相类型进行了试验验证。结果表明,钢中的平衡析出相为MX相、M23C6、M6C、Z相和Laves相。在热力学平衡条件下,MX相在850 ℃转化为Z相,M6C在787 ℃转化为Laves相。但是在实际热处理过程,由于保温时间较短且冷却速度较快,上述转化过程不会发生,所以钢中主要析出相为MX相、M23C6和M6C。平衡析出相种类与相分析的试验结果基本一致。MX相存在大尺寸的一次MX相和细小弥散的MX相,MX相主要受铌、氮元素影响,其析出量随氮含量升高而升高,析出温度随铌含量升高而升高;M23C6相的析出温度随碳含量增加而升高,析出量也随之升高;M6C的析出温度随铬含量增加而降低,随钼含量增加而升高;在成分范围内,元素控制原则为增加碳含量以增加M23C6的析出强化作用,减少铬含量以避免热加工时进入δ-Fe相区,减少钼含量以降低Laves相析出倾向,减少铌含量以降低一次MX相的析出温度,氮含量需要采取中间量以减少一次MX相析出,增加低温阶段细小弥散的MX相析出。  相似文献   

2.
采用物理化学相分析方法研究了高氮奥氏体不锈钢固溶时效后的碳、氮化物析出行为;通过实验确定了高氮钢中析出相的电化学萃取方法,钢中析出相的类型、粒度分布、含量及组成结构式;对于化学性质相似的M23C6和(CrFe)2N1-x,借助于X射线衍射定量的方法测定了M23C6和(CrFe)2N1-x的分量。研究结果表明,氮含量低的0#钢以M23C6型碳化物析出为主,随时效时间的延长,伴随M23C6的析出还有少量(CrFe)2N1-x 氮化物析出。氮含量高的1#和2#钢以(CrFe)2N1-x型氮化物析出为主。高氮奥氏体不锈钢中析出物的总量随时效时间的延长而增加。  相似文献   

3.
张剑桥 《特殊钢》2010,31(6):10-12
采用Thermo-Calc热力学计算软件,对9Cr18Mo马氏体不锈钢(%:0.95~1.10C、16.0~18.0Cr、0.4~0.7Mo)平衡析出相M23C6和铁素体以及非平衡凝固进行了模拟计算分析。结果表明,凝固时9Cr18Mo钢中C、Cr、Mo和Fe偏析都比较严重;C和Cr含量对M23C6析出量以及M23C6与基体中的Cr、Fe含量有一定的影响;而Mo含量的变化仅对M23C6析出量以及M23C6所含Cr、Mo元素有所影响。  相似文献   

4.
随着列车时速不断提高,制动盘承受的热负荷不断增大,这对制动盘材料提出了更高的要求.为了提高制动盘钢的机械性能及耐热疲劳性,钒元素被添加到制动盘钢中.本文研究了不同淬火温度时V含量对Cr-Mo-V系制动盘钢组织及力学性能的影响,并通过Thermo-Calc热力学软件、碳复型、透射电镜、能谱分析等方法对不同V含量时析出相的演变规律进行研究.结果表明,增加钒含量使高温析出的V(C,N)含量增加,细化奥氏体晶粒和回火马氏体组织.淬-回火态析出相主要为V(C,N)、(Mo,V)C、M7C3和M23C6.随钒含量增加,大尺寸M23C6和M7C3的析出被抑制,对韧性损害降低;小尺寸(Mo,V)C含量增多,析出强化效果增强.淬火温度为880~900℃时,增加钒含量能细化马氏体和减少大尺寸碳化物,弥补了析出强化对韧性的损害,故冲击功变化不大.淬火温度为920~940℃时,提高钒含量促使(Mo,V)C量急剧增加,冲击功快速下降.实验钢淬火温度不应超过900℃.   相似文献   

5.
采用Thermo-Calc热力学模拟计算与实验相结合的方法,优化设计了一种V、Ta微合金化的低活性F/M钢12Cr3WVTa,经1 050℃水淬及780℃回火后对其显微组织及析出相进行光学显微镜、扫描电镜和透射电镜观察以及能谱分析.实验钢淬火回火后显微组织由回火马氏体和少量δ铁素体相组成,析出相主要为M23C6和MX相(M=V,Ta;X=C,N),其中M23C6主要分布于回火马氏体板条界和相界,而MX弥散析出于回火马氏体板条内以及δ铁素体内.实验钢室温和高温(600℃)拉伸力学性能良好,600℃下材料抗拉强度为507 MPa,屈服强度为402 MPa,满足超临界水冷堆用包壳管的拉伸性能要求.   相似文献   

6.
张红  王立民  杨钢  刘荣佩  刘宁 《特殊钢》2007,28(1):35-37
马氏体热强钢1Cr20Co6Ni2WMoV用真空感应炉冶炼,锭重22.5 kg并锻成中16 mm棒材。试样经 1060℃1h油冷淬火, -70℃或-192℃2h空冷的冷处理,640 ℃3 h空冷回火处理。试验结果表明, 1Cr20Co6Ni2WMoV钢在热处理后的组织由高密度位错的回火板条马氏体、残余奥氏体、δ-铁素体和M23C6组成。 随冷处理温度由-70 ℃降至-192℃,晶界上M23C6析出数量增多,晶内位错密度升高,残余奥氏体含量降低,钢 的抗拉强度和屈服强度分别由1045 MPa和715 MPa提高至1090 MPa和760 MPa。  相似文献   

7.
殷会芳  杨钢  赵吉庆 《钢铁》2021,56(5):91-97
 为了调整COST-FB2转子钢的强韧性,采用OM、SEM和TEM等手段研究了回火温度对COST-FB2转子钢的析出相类型与力学性能的影响。结果表明,随着回火温度由350 ℃升高到750 ℃,试验钢的强度、硬度不断下降,塑性和冲击功上升;试验钢350 ℃和570 ℃回火后的高强低韧性可通过再次在700 ℃回火改善。淬火后COST-FB2转子钢中的残余奥氏体,可通过在570 ℃回火消除;在350 ℃和570 ℃回火后马氏体板条内部有大量针状的M3C,700 ℃回火后的显微组织中M3C消失,M23C6在原奥氏体晶界和马氏体板条界上析出,750 ℃回火后晶界上的M23C6有聚集粗化的现象,部分马氏体板条存在回复现象。  相似文献   

8.
X30N高氮不锈轴承钢在经过热处理后,材料表面会出现脱碳脱氮层,为研究C、N等局部成分变化对材料中第二相析出的影响,采用10 g/L氯化锂-40 g/L磺基水杨酸-5%(V/V)甘油甲醇溶液,通过电解萃取的方法将析出相从基体中分离,并利用X射线衍射仪(XRD)和扫描电镜(SEM)研究了析出相的结构和形貌,用碳硫分析仪、定氮仪和电感耦合等离子体原子发射光谱(ICP-AES)研究了析出相的元素含量。研究结果表明:经过热处理后,试验钢中主要析出相的类型为M23C6和Cr2(C,N),脱碳表面以Cr2(C,N)为主,随着距离脱碳表面深度的增加,M23C6的衍射谱峰逐渐明显,总析出相的含量逐渐增加,在脱碳表面下0.4 mm时基本达到稳定,C元素含量较脱碳层表面增加了460%,N元素含量较脱碳层表面增加了38.9%,总析出相元素含量较脱碳层表面增加了85.2%。Cr2(C,N)的形貌为球状颗粒,M23C6  相似文献   

9.
T91耐热钢析出物的热力学计算和平衡相分析   总被引:3,自引:0,他引:3  
采用Thermo-Calc热力学计算软件,对191耐热钢(%:0.09C、8.57Cr、0.90Mo、0.19V、0.08Nb、0.04N)600~1600℃存在的平衡相M23C6和MX进行了热力学计算。结果表明,T91钢600~1600℃主要平衡析出相为M23C6和MX,M23C6开始析出温度860℃,MX为1200℃。MX相中首先析出富Nb碳氮化物,随后析出富V碳氮化物。随钢中Nb、V、N含量的提高,MX的数量和平衡开始析出温度均有提高,其中N的影响最为显著。  相似文献   

10.
通过金相显微镜、扫描电镜、电子探针显微分析、透射电镜及热力学计算软件研究C和N含量对铸态及时效态18Mn18Cr高氮钢析出相特征及形成机制的影响.研究发现在铸态,随C/N质量比降低,析出相依次为Cr23C6相、σ相和Cr2N相.增加C或N含量可分别促进Cr23C6相和Cr2N相析出.C和N含量影响实验钢凝固模式及不稳定铁素体相共析分解产物.18Mn18Cr0.44N钢凝固模式为AF模式,不稳定铁素体相共析分解反应为δ→σ+γ2(0.025% C)和δ→γ2+Cr23(CxNy6(x/y>1)(0.16% C);18Mn18Cr0.72N钢凝固模式为A模式,晶界处存在少量颗粒状Cr2N相.在固溶时效态,实验钢仅析出片层状的Cr2N0.39C0.61相.随C+N含量增加,片层状析出相体积分数和片层间隙增加,析出孕育时间减少.   相似文献   

11.
In order to optimize the strength of P92 heat‐resistant steel, the variation in hardness and microstructural evolution during creep were investigated. The results show that before crept for 1429 h at 873 K, the coarsening of M23C6 is the main factor to decrease the hardness. When the creeping time prolongs from 1429 to 6063 h, the increase of hardness is mostly attributed to the precipitation of a large amount of Laves phase. Thereafter, the coarsening of Laves phase leads to the decline in hardness. The precipitation hardening resulting from MX drops distinctly in spite of the slight growth during creep. It is important to control the growth of MX, decrease the coarsening velocity of M23C6 and keep Laves phase to be fine.  相似文献   

12.
The effect of W on dislocation recovery and precipitation behavior was investigated for martensitic 9Cr-(0,l,2,4)W-0.1C (wt pct) steels after quenching, tempering, and subsequent prolonged aging. The steels were low induced-radioactivation martensitic steels for fusion reactor structures, intended as a possible replacement for conventional (7 to 12)Cr-Mo steels. During tempering after quenching, homogeneous precipitation of fine W2C occurred in martensite, causing secondary hardening between 673 and 823 K. The softening above the secondary hardening temperature shifted to higher temperatures with increasing W concentration, which was correlated with the decrease in self-diffusion rates with increasing W concentration. Carbides M23C6 and M7C3 were precipitated in the 9Cr steel without W after high-temperature tempering at 1023 K. With increasing W concentration, M7C3 was replaced by M23C6, and M6C formed in addition to M23C6. During subsequent aging at temperatures between 823 and 973 K after tempering, the recovery of dislocations, the agglomeration of carbides, and the growth of martensite lath subgrains occurred. Intermetallic Fe2W Laves also precipitated in the δ-ferrite grains of the 9Cr-4W steel. The effect of W on dislocation recovery and precipitation behavior is discussed in detail.  相似文献   

13.
The phase precipitation in industrial AISI 316L stainless steel during aging for up to 80,000 hours between 823 K and 1073 K (550 °C and 800 °C) has been studied using transmission electron microscopy, scanning transmission electron microscopy, and carbon replica energy-dispersive X-ray microanalysis. Three phases were identified: Chromium carbides (M23C6), Laves phase (η), and σ-phase (Fe-Cr). M23C6 carbide precipitation occurred firstly and was followed by the η and σ-phases at grain boundaries when the aging temperature is higher than 873 K (600 °C). Precipitation and growth of M23C6 create chromium depletion zones at the grain boundaries and also retard the σ-phase formation. Thus, the σ-phase is controlled by the kinetic of chromium bulk diffusion and can appear only when the chromium reaches, at grain boundaries and at the M23C6/γ and M23C6/η/γ interfaces, content higher than a critical value obtained by self-healing. An analytical model, based on equivalent chromium content, has been established in this study and successfully validated to predict the time–temperature–precipitation diagram of the σ-phase. The obtained diagram is in good agreement with the experimental results.  相似文献   

14.
The evolution of precipitates of S31042 steel during 700 °C aging was investigated by using a scanning electron microscope, a transmission electron microscope, and electron energy spectrum technology. The various combinations of M23C6, MX, NbCrN, and σ and G phases in the steel were found at different aging states. In the beginning of aging, M23C6 precipitates swiftly along the grain boundaries. When the aging time exceeds 6000 h, precipitated M23C6 carbides along the grain boundaries turn to be granular. It was found that Si element segregates to grain boundaries during above process, which may enhance the granular shape of M23C6 carbides and its transformation to σ and G phases. When the aging time exceeds 10000 h, various shaped σ phase and granular G phase appear along the grain boundaries and there are no continuous M23C6 carbides along the grain boundaries. Meanwhile, a large quantity of granular M23C6 carbides and a minor amount of G phase precipitate near the grain boundaries. Based on the segregation of silicon to the grain boundaries, a precipitation evolution model during aging was concluded.  相似文献   

15.
Thermo- Calc software was used to simulate the equilibrium precipitates in the 1Cr16Co5Ni2Mo1WVNbN steel at 650??, and the effect of Nb and V contents on precipitated phases in the steel was investigated. The calculation results show that the main equilibrium precipitates in steel are Laves phase, M23C6, MX and Z phase. With the increase of Nb content, the precipitation of MX phase increases significantly, while the amount of M23C6 carbids decreases, Laves phase increases slightly, the precipitation of Z phase decreases slightly. With the increase of V content, the precipitation of MX phase increases slowly, the amount of M23C6 carbides reduces slightly. There is no V element contained in Laves phase, and the increase of V content has little effect on the precipitation of Laves phase, precipitation of Z phase decreases slightly. The Nb and V contents have little effect on the precipitation temperature of M23C6, MX and Laves phase, and the starting precipitation temperature of Z phase decreases with the increase of Nb content, but increases with the increase of V content.  相似文献   

16.
Generally, Laves phase and M23C6 are regarded as undesirable phases in creep-resistant steels due to their very high-coarsening rates and the resulting depletion of beneficial alloying elements from the matrix. In this study, a computational alloy design approach is presented to develop martensitic steels strengthened by Laves phase and/or M23C6, for which the coarsening rates are tailored such that they are at least one order of magnitude lower than those in existing alloys. Their volume fractions are optimized by tuning the chemical composition in parallel. The composition domain covering 10 alloying elements at realistic levels is searched by a genetic algorithm to explore the full potential of simultaneous maximization of the volume fraction and minimization of the precipitates coarsening rate. The calculations show that Co and W can drastically reduce the coarsening rate of Laves and M23C6 and yield high-volume fractions of precipitates. Mo on the other hand was shown to have a minimal effect on coarsening. The strengthening effects of Laves phase and M23C6 in the newly designed alloys are compared to existing counterparts, showing substantially higher precipitation-strengthening contributions especially after a long service time. New alloys were designed in which both Laves phase and M23C6 precipitates act as strengthening precipitates. Successfully combining MX and M23C6 was found to be impossible.  相似文献   

17.
Long term aging of type 321 stainless steel indicates TiC, not M23C6, is the thermodynamically stable carbide phase. A theory is developed to explain appearance of M23C6 at intermediate times. The theory also indicates a means for preventing M23C6 formation and hence sensitization of the steel to intergranular corrosion. The amount of sigma found correlates well with results from shorter time studies. Two minor, still unidentified phases were seen along with Ti4C2S{i2}.  相似文献   

18.
An analytical electron microscopy study was undertaken in order to characterize intergranular and matrix precipitation accompanying intermediate temperature aging in NITRONIC 50, a nitrogen-strengthened austenitic stainless steel. Extensive precipitation on most grain boundaries had occurred after aging for 24 hours at 675 °C. The primary intergranular phase at that time was Cr-rich M23C6, and energy dispersive spectra taken on grain boundary segments between these carbides indicated Cr-depletion and Fe- and Ni-enhancement relative to the matrix. After aging for 336 and 1008 hours at 675 °C, M6C (eta-carbide) precipitates were also present on grain boundaries. These precipitates were distinguished from M23C6 on the basis of their lattice parameters and chemistries, with M6C containing less Cr and Fe, and more Ni, Mo, and Si than M23C6. The differences in chemistry were clarified by a statistical treatment of the spectra. The statistical analysis also showed that precipitates with a range of chemistries between M23C6 and M6C coexisted with these phases on the grain boundaries. Associated with this shift in precipitate stoichiometry was an increase in the average concentration of Cr and a decrease in the average concentration of Ni at the grain boundaries. Intergranular sigma phase was also observed after times 24 hours at 675 °C, with sigma precipitating on grain boundaries containing carbides. Intragranular precipitates observed to be stable up to 1008 hours at 675 °C included Z-phase, a complex nitride which had formed during solution annealing; M7C3 carbides, which nucleated at Z-phase/austenite interfaces; M23C6 carbides, which precipitated on incoherent twin boundaries; and Cr-rich MN precipitates, which nucleated on dislocations.  相似文献   

19.
Optical metallography, transmission electron microscopy, and X-ray diffraction from bulk extracted residues were used to investigate the microstructural stability in the temperature range 450°C to 950°C of a titanium-modified type 316 stainless steel and to compare this steel to a type 321 heat. The effect of cold deformation prior to aging was also investigated. Compared to standard type 316 stainless steel, the nucleation of M23C6 was delayed and its growth retarded in the titanium modified alloy due to early formation of TiC and Ti4C2S2 which reduced the carbon content in the matrix. Precipitation of the intermetallic σ and χ phases was faster in the titanium modified alloy. The type 321 material formed both M23C6 and the intermetallic phases less rapidly than either standard or titanium-modified type 316 steels. The relative tendencies toward intermetallic compound formation in various austentic stainless steels are discussed in terms of an “effective equivalent Cr content” remaining in the austenitic matrix after carbide precipitation. Cold work accelerated the precipitation rate of M23C6 and σ, but it suppressed χ formation due to preferential early σ formation. Early sigma formation was often associated with recrystallization of the cold worked matrix. Mechanisms accounting for this behavior are discussed.  相似文献   

20.
石如星  刘正东 《钢铁》2012,47(6):55-59
 用透射电镜、扫描电镜对两炉δ-铁素体含量不同的P92钢中的Laves相形貌与尺寸进行了分析与测量。结果表明:在时效状态下,δ-铁素体内也有Laves相析出,其尺寸显著大于马氏体基体中的Laves相;δ-铁素体含量越高,δ-铁素体内的Laves相尺寸与增长速度越大;δ-铁素体含量对马氏体基体中的Laves相尺寸影响不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号