首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
余能积分提取法计算应力强度因子   总被引:1,自引:0,他引:1  
徐永君  袁驷 《工程力学》1996,(A01):196-201
本文利用最小余能原理导出了一种计算应力强度因子的积分提取法,本方法的特点是只要已知位移场就可切口尖端附近的任意围线区域内进行应力强度因子的积分提取,对不同的问题及对任意张切口和任意多材料问题具通用性,文中给出基于有限元线法(FiniteElementMethodofLne,简称FEMOL)求解的单材料和双材料反平面切口问题及平面切口问题初步实施方案,给出了数值算例表明,本法原理简单,行之有效,为计  相似文献   

2.
基于双材料界面裂纹尖端的基本解,构造扩展有限元法(eXtended Finite Element Methods, XFEM)裂尖单元结点的改进函数。有限元网格剖分不遵从材料界面,考虑3种类型的结点改进函数:弱不连续改进函数、Heaviside改进函数和裂尖改进函数,建立XFEM的位移模式,给出计算双材料界面裂纹应力强度因子(Stress Intensity Factors, SIFs)的相互作用积分方法。数值结果表明:XFEM无需遵从材料界面剖分网格,该文的方法能够准确评价双材料界面裂纹尖端的SIFs。  相似文献   

3.
《工程力学》2010,27(9)
采用Green函数法研究含圆孔边界径向有限长度裂纹的无限压电材料对SH波的散射和裂纹尖端动应力强度因子问题。首先构造出具有半圆型凹陷半无限压电介质的弹性位移Green函数和电场Green函数,然后采用裂纹切割方法构造孔边裂纹,并根据契合思想和界面上的连接条件建立起求解问题的定解积分方程组。得到孔边动应力强度因子的解析表达式。最后作为算例,给出了裂纹尖端动应力强度因子的计算结果图并进行了讨论。部分计算结果与相应的弹性材料进行了比较。  相似文献   

4.
为精确而有效地求解机电耦合作用下含裂纹压电材料的断裂参数,首先,通过将复势函数法、扩展有限元法和光滑梯度技术引入到含裂纹压电材料的断裂机理问题中,提出了含裂纹压电材料的Cell-Based光滑扩展有限元法;然后,对含中心裂纹的压电材料强度因子进行了模拟,并将模拟结果与扩展有限元法和有限元法的计算结果进行了对比。数值算例结果表明:Cell-Based光滑扩展有限元法兼具扩展有限元法和光滑有限元法的特点,不仅单元网格与裂纹面相互独立,且裂尖处单元不需精密划分,与此同时,Cell-Based光滑扩展有限元法还具有形函数简单且不需求导、对网格质量要求低且求解精度高等优点。所得结论表明Cell-Based光滑扩展有限元法是压电材料断裂分析的有效数值方法。   相似文献   

5.
6.
通过建立Cymbal压电发电换能器的机电耦合有限元分析模型,计算分析了换能器结构参数对输出电压和谐振频率的影响以及外接负载对Cymbal换能器输出电压和输出功率的影响。研究表明,为了降低换能器的工作频率和提高换能器的输出电压,应增大换能器的空腔底部直径和减小换能器的空腔高度;在选择金属端冒和压电陶瓷厚度等参数时,应综合考虑换能器系统的刚度和外界振动源的频率特性和加速度特性;在任意一个频率点上,Cymbal换能器均存在一个最佳的外接负载,使得换能器的输出功率最大,而这个最佳的负载阻抗就等于Cymbal换能器在这个工作频率点上的输出阻抗。文中还提出并分析了基于外加预应力的多振子级联方式Cymbal压电发电换能器系统的结构。  相似文献   

7.
推导了一种适用于梯度复合材料断裂特性分析的梯度扩展单元,采用细观力学方法描述材料变化的物理属性,通过线性插值位移场给出了4节点梯度扩展元随空间位置变化的刚度矩阵,并建立了结构的连续梯度有限元模型.通过将梯度单元的计算结果与均匀单元以及已有文献结果进行对比,证明了梯度扩展有限元(XFEM)的优越性,并进一步讨论了材料参数对裂纹尖端应力强度因子(SIF)的影响规律.研究结果表明:随着网格密度的增加,梯度单元的计算结果能够迅速收敛于准确解,均匀单元的计算误差不会随着网格细化而消失,且随着裂纹长度和属性梯度的增大而增大;属性梯度和涂层基体厚度比的增大导致涂覆型梯度材料的SIF增大;裂纹长度的增加和连接层基体厚度比的减小均导致连接型梯度材料的SIF增大.  相似文献   

8.
压电材料渗透型反平面界面裂纹的奇异因子   总被引:6,自引:1,他引:5  
本文用复变函数解析延展原理,研究了集中载荷作用下的不同压电材料反平面应变 状态的电渗透型界面裂纹的耦合场:对单个裂纹,给出了封闭形式的复函数解和场强度因子。 结果表明,在裂尖处耦合场有(1/2)阶的奇异性。  相似文献   

9.
运用ANSYS 商用有限元软件,采用非奇异单元和Newmark 积分算法,通过最小二乘法拟合,准确的获得了多个模型动态应力强度因子的解。所使用的方法适用范围广,这对于运用线弹性断裂动力学解决工程中的实际问题是有益的和必要的。  相似文献   

10.
梯度复合材料应力强度因子计算的梯度扩展单元法   总被引:1,自引:0,他引:1  
推导了一种适用于梯度复合材料断裂特性分析的梯度扩展单元, 采用细观力学方法描述材料变化的物理属性, 通过线性插值位移场给出了4节点梯度扩展元随空间位置变化的刚度矩阵, 并建立了结构的连续梯度有限元模型。通过将梯度单元的计算结果与均匀单元以及已有文献结果进行对比, 证明了梯度扩展有限元(XFEM)的优越性, 并进一步讨论了材料参数对裂纹尖端应力强度因子(SIF)的影响规律。研究结果表明: 随着网格密度的增加, 梯度单元的计算结果能够迅速收敛于准确解, 均匀单元的计算误差不会随着网格细化而消失, 且随着裂纹长度和属性梯度的增大而增大; 属性梯度和涂层基体厚度比的增大导致涂覆型梯度材料的SIF增大; 裂纹长度的增加和连接层基体厚度比的减小均导致连接型梯度材料的SIF增大。  相似文献   

11.
The modelization of bending plates with through‐the‐thickness cracks is investigated. We consider the Kirchhoff–Love plate model, which is valid for very thin plates. Reduced Hsieh–Clough–Tocher triangles and reduced Fraejis de Veubeke–Sanders quadrilaterals are used for the numerical discretization. We apply the eXtended Finite Element Method strategy: enrichment of the finite element space with the asymptotic bending singularities and with the discontinuity across the crack. The main point, addressed in this paper, is the numerical computation of stress intensity factors. For this, two strategies, direct estimate and J‐integral, are described and tested. Some practical rules, dealing with the choice of some numerical parameters, are underlined. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
13.
This paper presents fracture mechanics analysis using the wavelet Galerkin method and extended finite element method. The wavelet Galerkin method is a new methodology to solve partial differential equations where scaling/wavelet functions are used as basis functions. In solid/structural analyses, the analysis domain is divided into equally spaced structured cells and scaling functions are periodically placed throughout the domain. To improve accuracy, wavelet functions are superposed on the scaling functions within a region having a high stress concentration, such as near a hole or notch. Thus, the method can be considered a refinement technique in fixed‐grid approaches. However, because the basis functions are assumed to be continuous in applications of the wavelet Galerkin method, there are difficulties in treating displacement discontinuities across the crack surface. In the present research, we introduce enrichment functions in the wavelet Galerkin formulation to take into account the discontinuous displacements and high stress concentration around the crack tip by applying the concept of the extended finite element method. This paper presents the mathematical formulation and numerical implementation of the proposed technique. As numerical examples, stress intensity factor evaluations and crack propagation analyses for two‐dimensional cracks are presented. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
In this article, the extended finite element method is employed to solve problems, including weak and strong discontinuities. To this end, a level set framework is used to represent the discontinuities location, and the Heaviside and Branch function are included in the standard finite element method. The case of two arbitrary curved cracks is solved numerically and stress intensity factor (SIF) values at the crack tips are calculated based on the evaluation of the crack tip opening displacement. Afterwards, J-integral methodology is adopted to evaluate the SIFs for isotropic and anisotropic bi-material interface crack problems. Numerical results are verified with those presented in the literature.  相似文献   

15.
The extended finite element method was introduced in 1999 to treat problems involving discontinuities with no or minimal remeshing through appropriate enrichment functions. This enables elements to be split by a discontinuity, strong or weak, and hence requires the integration of discontinuous functions or functions with discontinuous derivatives over elementary volumes. A variety of approaches have been proposed to facilitate these special types of numerical integration, which have been shown to have a large impact on the accuracy and the convergence of the numerical solution. The smoothed extended finite element method (XFEM), for example, makes numerical integration elegant and simple by transforming volume integrals into surface integrals. However, it was reported in the literature that the strain smoothing is inaccurate when non‐polynomial functions are in the basis. In this paper, we investigate the benefits of a recently developed Linear smoothing procedure which provides better approximation to higher‐order polynomial fields in the basis. Some benchmark problems in the context of linear elastic fracture mechanics are solved and the results are compared with existing approaches. We observe that the stress intensity factors computed through the proposed linear smoothed XFEM is more accurate than that obtained through smoothed XFEM.  相似文献   

16.
The aim of the paper is to study the capabilities of the extended finite element method (XFEM) to achieve accurate computations in non‐smooth situations such as crack problems. Although the XFEM method ensures a weaker error than classical finite element methods, the rate of convergence is not improved when the mesh parameter h is going to zero because of the presence of a singularity. The difficulty can be overcome by modifying the enrichment of the finite element basis with the asymptotic crack tip displacement solutions as well as with the Heaviside function. Numerical simulations show that the modified XFEM method achieves an optimal rate of convergence (i.e. like in a standard finite element method for a smooth problem). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
New enrichment functions are proposed for crack modelling in orthotropic media using the extended finite element method (XFEM). In this method, Heaviside and near‐tip functions are utilized in the framework of the partition of unity method for modelling discontinuities in the classical finite element method. In this procedure, by using meshless based ideas, elements containing a crack are not required to conform to crack edges. Therefore, mesh generation is directly performed ignoring the existence of any crack while the method remains capable of extending the crack without any remeshing requirement. Furthermore, the type of elements around the crack‐tip remains the same as other parts of the finite element model and the number of nodes and consequently degrees of freedom are reduced considerably in comparison to the classical finite element method. Mixed‐mode stress intensity factors (SIFs) are evaluated to determine the fracture properties of domain and to compare the proposed approach with other available methods. In this paper, the interaction integral (M‐integral) is adopted, which is considered as one of the most accurate numerical methods for calculating stress intensity factors. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号