首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
芦飞  王瑛 《冶金分析》2015,35(7):67-72
由于不锈钢标渣在市场上很难购买,且熔融制样-X射线荧光光谱(XRF)无法满足炉前不锈钢渣样的快速分析要求,实验利用转炉渣、高炉渣、平炉渣等标准样品和文献方法定值的不锈钢渣生产样品,建立熔融制样-X射线荧光光谱的校准曲线,并用于不锈钢渣样的定值分析,将此定值分析结果用于压片制样-X射线荧光光谱校准曲线的绘制,从而实现不锈钢渣中CaO、SiO2、Al2O3、MnO、MgO、TFe、P2O5、TiO2、Cr2O3和NiO的炉前快速分析。对熔融制样的条件及方法的精密度和准确度均进行了考察,保证了绘制校准曲线用不锈钢渣测定结果的准确性。通过试验确定压片制样-X射线荧光光谱的分析条件为:研磨时间50 s;40 g试样中添加5粒粘合剂;100 kN压力,保压时间15 s进行压片。各组分校准曲线的相关系数均大于0.999。对同一不锈钢渣进行压片制样-XRF的精密度考察,各组分测定结果的相对标准偏差为0.43%~4.6%;准确度验证结果表明,压片制样的测定结果同熔融制样的测定结果一致,但压片制样XRF满足炉前不锈钢渣分析量大、分析速度快的要求。  相似文献   

2.
张蕾 《冶金分析》2022,42(5):67-73
快速准确地测定炉渣中多种组分含量,既是冶炼生产工艺的要求,也是环境保护和冶金废弃物综合利用的要求。实验采用聚酯(PET)薄膜包裹粉末压片法制样,选取与待测样品粒度一致的炉渣标准样品与高纯物质按照不同的比例,配制成各组分含量从低到高具有一定梯度炉渣校准样品,对其拟合校准曲线,建立了X射线荧光光谱法(XRF)同时测定高炉渣、转炉渣、电炉渣或平炉渣中SiO2、TFe、Al2O3、CaO、MgO、TiO2、S、P2O5、TMn含量的快速分析方法。PET薄膜包裹压片制样,减少了粉尘污染,把对仪器损坏的几率降到了最低,而且可以防止压片暴露在空气中,增加压片保存时间。通过调整仪器分析参数,控制试样在粒度大小方面一致以及采用OXSAS软件自带的TL+方程同时进行谱线重叠干扰校正和基体效应校正,有效地克服了炉渣复杂体系中各元素谱线干扰与基体效应,实现了粉末压片制样-X射线荧光光谱法对炉渣各组分的测定。按照实验方法对高炉渣样品进行精密度试验,结果的相对标准偏差(RSD,n=10)为0.16%~2.1%。采用实验方法对高炉渣、转炉渣、电炉渣或平炉渣标准样品和实际样品进行测定,结果与认证值或熔融法测定值相吻合。  相似文献   

3.
熔融制样-X射线荧光光谱法测定连铸保护渣中7种组分   总被引:1,自引:0,他引:1  
赵海峰 《冶金分析》2017,37(4):62-66
连铸保护渣成分构成复杂,采用粉末压片制样-X射线荧光光谱法测定时基体效应严重。实验采用将样品在1 100 ℃下灼烧2 h以测定灼烧减量,选择氧化剂NH4NO3在600 ℃下对样品预氧化10 min,然后将氧化后的样品、NH4NO3与Li2B4O7-LiBO2混合熔剂(m:m=67:33)按质量比为1:2:10的比例进行熔融制样,熔片效果良好。使用专用氧化物标准样品绘制校准曲线,以数学回归法、基本参数法和理论影响系数法消除基体效应和谱线干扰,校准曲线的相关系数均大于0.999。从而建立了熔融制样-X射线荧光光谱法快速测定连铸保护渣中SiO2、Al2O3、CaO、MgO、K2O、Na2O和TFe的分析方法。对同一个连铸保护渣样品进行精密度考察,7种组分测定结果的相对标准偏差(RSD,n=10)均小于2%;准确度验证结果表明,实验方法的测定值与其他方法的测定值吻合较好。  相似文献   

4.
采用压片制样-能量色散X射线荧光光谱测量铁矿石中11种组分(TFe、MgO、Al2O3、SiO2、P、S、TiO2、CaO、Mn、Cu、Zn)。通过试验确定保持压力30 MPa、时间30 s的压片制样条件和样品的粒度为200目(74 μm),同时,通过采用化学方法定值的生产样品应用于校准曲线的绘制,可最大程度地减少矿物效应和粒度效应对分析结果造成的影响。采用经验系数法进行谱线的重叠校正和组分间的吸收和增强效应校正,各组分校准曲线的相关系数均大于0.999。对同一个铁矿石样品进行精密度考察,各组分测定结果的相对标准偏差(RSD,n=10)为0.14%~5.8%。对铁矿石实际样品进行正确度考察,测定值与滴定法测定全铁、电感耦合等离子体原子发射光谱法(ICP-AES)测定其他元素的分析结果一致。实验方法尤其适用于大宗铁矿石样品的批量分析。  相似文献   

5.
X射线荧光光谱法测定石灰石中多组分含量   总被引:1,自引:0,他引:1       下载免费PDF全文
采用粉末压片法制样,建立了X射线荧光光谱法测定石灰石中10种组分(CaO、SiO2、MgO、Fe2O3、Al2O3、MnO、TiO2、K2O、Na2O、SrO)含量的方法。通过试验确定石灰石样品粒度达到74 μm以下,3.00 g样品称样量,30 t压力压片的制样条件。试验发现,压片时利用硼酸镶边和硼酸衬底,不另外添加粘结剂可解决样品粘结问题;利用经验α系数法校正基体效应,校正后校准曲线的离散度较小,有效地消除了重叠谱线干扰。各组分的检出限在0.47~188.08 μg/g之间。对石灰石试样进行精密度考察,各组分含量的相对标准偏差(RSD)在0.042%~5.7%范围内;对石灰石标准样品进行分析,各组分的测定值与认定值相符。方法满足进出口商品检验工作对效率和准确度的要求。  相似文献   

6.
中低品位铝土矿种类繁多,Al2O3含量较低,而其他组分较为复杂,常富含Fe2O3、CaO、MgO、S等组分,应用熔融制样-X射线荧光光谱法(XRF)测定富含Fe2O3、S的样品在熔融时会腐蚀铂-金坩埚,样品流动性差,而且高温下S挥发严重。实验使用NH4NO3作为氧化剂,采用熔融法制样,建立了波长色散X射线荧光光谱法同时测定中低品位铝土矿和高硫铝土矿中Al2O3、SiO2、Fe2O3、CaO、TiO2、K2O、Na2O、MgO、P2O5、S的分析方法。为了拓宽Fe2O3、S等组分的含量范围,采用国家标准物质之间互相配制和经多次化学分析的样品来绘制校准曲线;通过试验确定样品与熔剂的稀释比为1∶20,加入1.0g NH4NO3作为氧化剂,滴加0.5mL LiBr溶液作脱模剂,在1050℃下熔样8min,可制得透彻、玻璃化程度高的样片。各组分的检出限在27.7~259μg/g之间,各组分测定结果的相对标准偏差(RSD,n=12)小于3%。经实际样品分析,各组分测定值与其他方法分析结果相吻合,有效解决了富含Fe2O3、S的中低品位铝土矿和高硫铝土矿的制样问题及S不易被准确测定的难题,可用于测定S质量分数15%以内的铝土矿样品。  相似文献   

7.
利用工业废渣(高炉矿渣、钢渣、铜渣、铬渣、铁合金渣等)为主要原料生产微晶铸石效益巨大,而目前对微晶铸石中主要组分(SiO2、Al2O3、CaO、MgO、TFe、TiO2)的分析一般采用化学湿法,操作相对繁琐、流程长。实验采用Li2B4O7-LiBO2混合熔剂(m∶m=67∶33)按质量比为1∶12.5的比例进行熔融制样,无需采用氧化剂预氧化,加入0.15g NH4I做脱模剂,消除了样品的矿物结构效应,降低了基体效应的影响,实现了熔融制样-X 射线荧光光谱法对微晶铸石中SiO2、Al2O3、CaO、MgO、TFe和TiO2含量的同时测定。实验选择与微晶铸石基体相似的国家级和行业级转炉渣、高炉渣、古冶熟料、矾土等标准物质人工合成校准样品绘制校准曲线,解决了微晶铸石标准物质缺失的问题,以数学回归法、基本参数法和理论影响系数法消除基体效应和谱线干扰,校准曲线的相关系数均大于0.999。对同一个微晶铸石样品进行精密度考察,6种组分测定结果的相对标准偏差(RSD,n=10)均小于5.0%;正确度验证结果表明,实验方法的测定值与其他方法的测定值吻合较好。  相似文献   

8.
珊瑚礁样品中SiO2、Al2O3、Fe2O3、Na2O、K2O、MnO、TiO2和P2O5等低含量组分的测试通常需要采用不同的方法和仪器,难以满足批量样品测试的需求。实验以Li2B4O7-LiBO2-LiF为熔剂,采用高温熔融制样,建立X射线荧光光谱法(XRF)测定珊瑚礁样品中SiO2、Al2O3、Fe2O3、MgO、CaO、Na2O、K2O、MnO、TiO2、P2O5、SO3、Sr、Zr、Ba和Cr含量的方法。对熔融制样条件进行了优化,其中脱模剂LiBr饱和溶液最佳用量为150 μL。选取岩石、碳酸盐岩石、水系沉积物国家标准物质以及在标准物质中加入Sr标准溶液的方式建立校准样品系列,Sr和Zr采用经验系数法和康普顿散射线内标法校正基体效应,其他组分采用理论α系数校正基体效应,有效克服了基体效应的影响。结果表明,各组分测定值的相对标准偏差(RSD,n=7)为0.25%~19.5%。方法用于珊瑚礁实际样品分析,其分析结果与采用化学湿法的测定结果吻合,各组分的相对误差绝对值为0~28.86%。  相似文献   

9.
郑小敏  於利慧 《冶金分析》2019,39(11):16-23
酸溶性钛渣是优质的钛白生产原料,产品中的主次成分含量直接影响到后续钛白产品质量。针对酸溶性钛渣中含有低价物的特点,试验了粉末压片法制备样品的X射线荧光光谱法分析效果,并建立了熔融玻璃片制备方法:采用Li2B4O7和Li2CO3作为熔剂,NH4NO3作为氧化剂,在石墨垫底瓷坩埚中先将酸溶性钛渣预氧化,再将熔球转入铂黄金坩埚,解决了样品中低价物对铂黄金坩埚腐蚀的难题。实验采用理论α影响系数法进行基体效应和谱线重叠干扰校正,进而通过对熔融条件及各待测元素测量条件的优化,以及采用金红石、钛渣、钛精矿等标准样品及人工合成校准样品绘制校准曲线,建立了X射线荧光光谱法(XRF)同时测定酸溶性钛渣中TiO2、SiO2、Al2O3、MnO、CaO、MgO、TFe、V2O5、ZrO2等主次量成分的方法。将实验方法应用于酸溶性钛渣实际样品分析,所测组分测定结果的相对标准偏差(RSD,n=11)均小于1.5%。采用实验方法测定酸溶性钛渣中主次量成分,分析结果与化学湿法结果吻合。  相似文献   

10.
郑小敏  於利慧 《冶金分析》1982,39(11):16-23
酸溶性钛渣是优质的钛白生产原料,产品中的主次成分含量直接影响到后续钛白产品质量。针对酸溶性钛渣中含有低价物的特点,试验了粉末压片法制备样品的X射线荧光光谱法分析效果,并建立了熔融玻璃片制备方法:采用Li2B4O7和Li2CO3作为熔剂,NH4NO3作为氧化剂,在石墨垫底瓷坩埚中先将酸溶性钛渣预氧化,再将熔球转入铂黄金坩埚,解决了样品中低价物对铂黄金坩埚腐蚀的难题。实验采用理论α影响系数法进行基体效应和谱线重叠干扰校正,进而通过对熔融条件及各待测元素测量条件的优化,以及采用金红石、钛渣、钛精矿等标准样品及人工合成校准样品绘制校准曲线,建立了X射线荧光光谱法(XRF)同时测定酸溶性钛渣中TiO2、SiO2、Al2O3、MnO、CaO、MgO、TFe、V2O5、ZrO2等主次量成分的方法。将实验方法应用于酸溶性钛渣实际样品分析,所测组分测定结果的相对标准偏差(RSD,n=11)均小于1.5%。采用实验方法测定酸溶性钛渣中主次量成分,分析结果与化学湿法结果吻合。  相似文献   

11.
One of the most efficient ways to eliminate the harm of chromium oxide in stainless steel slag is to reduce chromium oxide in stainless steel slag using aluminium. In the present work, the Al reduction of synthetic CaO–SiO2–Al2O3–MgO–Fe2O3–Cr2O3 stainless steelmaking slags at different conditions, including temperature, slag basicity and Al amount was investigated to get optimal conditions for the reduction and the metal–slag separation. It was found that the agglomeration of metal droplets and metal–slag separations were improved by increasing temperature. The reduction degrees of SiO2, Fe2O3 and Cr2O3 were enhanced with increasing basicity of slag. The addition of CaF2 in slag leads to better agglomerations of metal droplets and metal–slag separations. The highest reduction degree of chromium could reach 99% in slag with basicity of 2 at 1873 K.  相似文献   

12.
ABSTRACT

The mineralogical phase of slag after crystallisation is essential to utilisation of steelmaking slag. The mineralogical phases of cooled multicomponent CaO–SiO2–MgO–Al2O3–FetO–P2O5 slag with different iron oxide contents and basicities (defined as the ratio of mass percentage of CaO to mass percentage of SiO2 (w(CaO)/w(SiO2))) in different atmospheres were investigated in the present work by scanning electronic microscopy and energy dispersed spectroscopy analysis and X-ray diffraction. The mineralogical phases in steelmaking slag cooled in argon are mainly nCa2SiO4-Ca3(PO4)2 (thereafter nC2S-C3P) solid solution, (Fe, Mn, Mg)O (RO) phase. Some CaMgSiO4 phases could be found in slag with lower basicity. The mineralogical phases in steelmaking slag cooled in air are mainly nC2S-C3P solid solution, spinel phase. The overall crystallisation of slag cooled in both argon and air was enhanced with increasing basicity. However, the crystal sizes become smaller in sample with high basicity. The Fe-enriched phases were transformed from non-faceted RO phase in sample cooled in argon to faceted spinel phases in sample cooled in air. The crystallisation of slag cooled in both argon and air was promoted with increasing FeOx content. The phosphorus content in solid solution was elevated with decreasing basicity and increasing FeOx content. It was implied by the present work that appropriate basicity and air oxidation would be beneficial to magnetic separation and phosphorus utilisation.  相似文献   

13.
Laser‐Induced Breakdown Spectroscopy (LIBS) is used for the analysis of steelmaking slags (EAF, Ladle Furnace (LF) and Vacuum Ladle Degasser (VLD)). In view of the potential industrial application of LIBS for rapid slag analysis, relatively simple criteria were employed in order to obtain calibration curves for the elements of interest. The LIBS experiments were performed on samples prepared after crushing and milling to a size less than 0.2 mm and on as delivered solidified slag samples. In general, the analysis of the solidified as delivered slag samples exhibited better results than the corresponding analysis of the pressed slag, mainly for the elements distributed in the matrix. Thus, for LIBS application, the time consuming sample preparation of the slag can be avoided. According to the results obtained, the potential of LIBS technique for in‐situ, multi‐element analysis of slag was examined at the 60t‐ EAF of Helliniki Halyvourgia SA (HH‐Greece). The most important parameters that influence slag analysis are the laser pulse energy, the number of accumulated laser shots, the laser beam focusing conditions and the gating conditions of the detector. LIBS accuracy was found to depend on both the distribution of elements in the slag and on their environment (i.e. if they are embedded in the matrix or in a specific crystallized phase) as well. LIBS limitations for quantitative slag analysis are also discussed. The accuracy of FeOn LIBS analysis for as delivered solidified EAF and VLD slags of the steel plant of Georgsmarienhütte was satisfactory showing a Regression Coefficient (RC) of 0.93 and 0.95 respectively. The accuracy of SiO2 and MgO analysis of VLD slags with RCs of 0.94 and 0.86 respectively was also satisfactory. In contrast, for the EAF slags the RC for MgO and SiO2, due to the observed non‐homogeneous crystallized phases have shown insufficient values, with 0.55 and 0.43 respectively. Similar results were gained for the FeOn, MgO and SiO2 analysis of the HH slags. Due to the higher intensity of scattering, the analysis of CaO, Al2O3 and Cr2O3 was of lower accuracy than for FeOn, MgO and SiO2.  相似文献   

14.
High-temperature experiments and Refractory-Slag-Metal-Inclusion (ReSMI) multiphase reaction simulations were carried out to determine the effect of the ladle slag composition on the formation behavior of non-metallic inclusions in molten steel. Immediately after the slag-metal reaction, magnesium migrated to the molten steel and a MgAl2O4 spinel inclusion was formed due to a reaction between magnesium and alumina inclusions. However, the spinel inclusion changed entirely into a liquid oxide inclusion via the transfer of calcium from slag to metal in the final stage of the reaction. Calcium transfer from slag to metal was more enhanced for lower SiO2 content in the slag. Consequently, the spinel inclusion was modified to form a liquid CaO-Al2O3-MgO-SiO2 inclusion, which is harmless under steelmaking conditions. The modification reaction was more efficient as the SiO2 content in the slag decreases.  相似文献   

15.
Based on the analysis of reaction mechanism between CO2 and molten pool elements at the steelmaking temperature, and on the calculation of materials and heat balance during converter steelmaking process with blowing CO2, a new technology which uses CO2‐O2 as top gas and CO2 as bottom gas in a converter was proposed and experimented in a 30 t converter. It is found that the new technology is feasible absolutely, the amounts of smoke dust and T‐Fe are reduced by 11.15% and 12.98% on average, the contents of nitrogen and phosphorus are decreased by 50% and 23.33% respectively, iron loss of slag is lowered by 3.10% and oxygen consumption is reduced remarkably. This research will provide a new blowing method for BOF steelmaking process, which can save steelmaking energy consumption and reduce smelting cost.  相似文献   

16.
By carbon dioxide mineralization, CO2 can be stored safely and leakage‐free for very long times. Owing to their high calcium content, steelmaking slags are suitable for mineral carbonation. In a country like Finland, where no suitable geological formations for CO2 storage seem to exist, steelmaking slag carbonation offers an important CO2 emissions reduction option for steel plants. If calcium could be extracted selectively from the slags prior to carbonation, a pure, and possibly marketable, calcium carbonate may be produced. This could replace some of the natural and synthetic CaCO3 used in industry, combining savings in natural resources with CO2 emissions reduction. Development work on the production of pure calcium carbonate from steelmaking slags by carbonation is presented in this study. Selective extraction of calcium from steelmaking slags was investigated using various solvents. Precipitation of CaCO3 from dissolved calcium at atmospheric pressure was also investigated. Amongst the various tested solvents ammonium salt solutions (NH4Cl, CH3COONH4, NH4NO3) were found to be the most promising for selectively extracting calcium from steel converter slag. These solvents dissolved calcium efficiently also from desulphurization slag, while extraction of calcium from two other types of slag was poor. CaCO3 was successfully precipitated from the solution containing ammonium salt and dissolved steel converter slag.  相似文献   

17.
Basic oxygen furnace (BOF) steel slag is a main byproduct in steelmaking, and its valorization is therefore of considerable interest, from a metal-recovery perspective and from a residue-utilization perspective. In the present study, the carbothermic reduction of BOF slag was investigated systematically. The reductions of Fe- and P-containing phases (i.e., oxide and compounds) are discussed. Effects of Al2O3 and SiO2 additions on the solidification microstructure and mineralogy associated with the reduction processes were also investigated. The formation and growth of the extracted metallic phase are discussed, and the mineralogy of the residue slag is determined. We conclude that by controlling the additions under a rapid cooling condition, it is possible to extract metallic iron as high-grade metal and simultaneously to utilize the remaining slag for construction applications.  相似文献   

18.
The MgO solubility in the CaO‐MgO‐Fe2O3‐FeO‐SiO2‐(MnO)‐(Al2O3) slag was measured under the condition of equilibrium with the ambient air at 1873 K as a fundamental study for precise slag coating control in BOF operation. The CaO/SiO2 mass ratios of the main slag were 1, 1.5, 2, 3 and 4, and total iron content was in the range of 10 to 35 %. Moreover, 1 to 13 % of MnO and 2 to 12 % of Al2O3 were added to the melt to evaluate their effects on the MgO solubility. The effect of slag composition on the MgO solubility was discussed and quantified by means of a newly developed formula. As the basicity in slag increases, the MgO solubility decreases. The effect of iron oxide content is observed to be dependent on the basicity of slag. An increase in iron oxide content makes the MgO solubility higher for basic slag but lower for acidic slag. It is revealed that the MgO solubility in steelmaking slag is controlled by the complex anion formation reaction of iron oxide. Both Al2O3 and P2O5 increase the MgO solubility by diluting the basic oxides as SiO2 does, while manganese oxide affects the MgO solubility in a similar manner as iron oxide. The MgO solubility can be described as a function of slag composition, X = (%CaO) + 0.45(%Fe2O3+ %FeO) + 0.55(%MnO), in the equation of (%MgO) = 0.00816X2‐1.404X + 62.31. Based on the results, the guidance for addition of MgO‐containing material could be suggested for best slag coating practice.  相似文献   

19.
The reduction of chromium oxide from a basic steelmaking slag (45 wt pct CaO, 35 wt pct SiO2, 10 wt pct MgO, 10 wt pct A12O3) by silicon dissolved in liquid iron at steelmaking temperatures was studied to determine the rate-limiting steps. The reduction is described by the reactions: (Cr2O3) + Si = (SiO2) + (CrO) + Cr [1] and 2 (CrO) +Si = (SiO2) + 2 Cr [2] The experiments were carried out under an argon atmosphere in a vertical resistance-heated tube furnace. The slag and metal phases were held in zirconia crucibles. The course of the reactions was followed by periodically sampling the slag phase and analyzing for total chromium, divalent chromium, and iron. Results obtained by varying stirring rate, temperature, and composition defined the rate-limiting mechanism for each reaction. The rate of reduction of trivalent chromium (reaction [1] above) increases with moderate increases in stirring of the slag, and increases markedly with increases in temperature. The effects of changes in composition identified the rate-limiting step for Cr+3 reduction as diffusion of Cr+3 from the bulk slag to the slag-metal interface. The rate of reduction of divalent chromium does not vary with changes in stirring of the slag, but increases in temperature markedly increase the reaction rate. Thus, this reaction is limited by the rate of an interfacial chemical reaction. The reduction of divalent chromium is linearly dependent on concentration of divalent chromium, but is independent of silicon content of the metal phase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号