首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Experimental study of surface roughness in slot end milling AL2014-T6   总被引:3,自引:2,他引:3  
The aim of this work was to analyze the influence of cutting condition and tool geometry on surface roughness when slot end milling AL2014-T6. The parameters considered were the cutting speed, feed, depth of cut, concavity and axial relief angles of the end cutting edge of the end mill. Surface roughness models for both dry cutting and coolant conditions were built using the response surface methodology (RSM) and the experimental results. The results showed that the dry-cut roughness was reduced by applying cutting fluid. The significant factors affecting the dry-cut model were the cutting speed, feed, concavity and axial relief angles; while for the coolant model, they were the feed and concavity angle. Surface roughness generally increases with the increase of feed, concavity and axial relief angles, while concavity angle is more than 2.5°.  相似文献   

2.
An in-process based surface recognition system to predict the surface roughness of machined parts in the end milling process was developed in this research to assure product quality and increase production rate by predicting the surface finish parameters in real time. In this system, an accelerometer and a proximity sensor are employed as in-process surface recognition sensors during cutting to collect the vibration and rotation data, respectively. Using spindle speed, feed rate, depth of cut, and the vibration average per revolution (VAPR) as four input neurons, an artificial neural networks (ANN) model based on backpropagation was developed to predict the output neuron-surface roughness Ra values. The experimental results show that the proposed ANN surface recognition model has a high accuracy rate (96–99%) for predicting surface roughness under a variety of combinations of cutting conditions. This system is also economical, efficient, and able to be implemented to achieve the goal of in-process surface recognition by retrieving the weightings (which were generated from training and testing by the artificial neural networks), predicting the surface roughness Ra values while the part is being machined, and giving feedback to the operators when the necessary action has to be taken.  相似文献   

3.
Better prediction about the magnitude and distribution of workpiece temperatures has a great significance for improving performance of metal cutting process, especially in the aviation industry. A thermal model is presented to describe the cyclic temperature variation in the workpiece for end milling. Owing to rapid tool wear in the machining of aeronautical components, flank rubbing effect is considered. In the proposed heat source method for milling, both the cutting edge and time history of process are discretized into elements to tackle geometrical and kinematical complexities. Based on this concept, a technique to calculate the workpiece temperature in stable state, which supposes the tool makes reverse movement, is developed. And a practicable solution is provided by constructing a periodic temperature rise function series. This investigation indicates theoretically and experimentally the impact of different machining conditions, flank wear widths and cutter locations on the variation of workpiece temperature. The model results have been compared with the experimental data obtained by machining 300M steel under different flank wear widths and cutting conditions. The comparison indicates a good agreement both in trends and values. With the alternative method, an accurate simulation of workpiece temperature variation can be achieved and computational time of the algorithm is obviously shorter than that of finite element method. This work can be further employed to optimize cutting conditions for controlling the machined surface integrity.  相似文献   

4.
In this paper, a new type of model for the end milling process is presented considering cutter flexibility, which includes not only the static but also the dynamic deflection of the cutter. According to the basic assumption for a linear elastic body, the force acting on the cutter and its deflection in the milling process are both divided into two parts: the static and the dynamic. By considering the regenerative feedback in the practical milling process, the dynamic milling force acting on a unit length of the cutter is derived. Furthermore, a new kind of dynamic deflection model of the cutter is established. Based on this model, a new set of efficient numerical simulation algorithms are presented. In the mean time, the static deflection of the cutter is also formulated. Finally, the simulation and measurement of the milled surface topography for the end milling process show the feasibility of this model.  相似文献   

5.
Tool vibrations have a significant influence on the surface quality with respect to surface location error and roughness. Even chatter-free milling processes can produce a high surface location error since chatter-free does not necessarily mean vibration-free. This article describes a geometric model for predicting the surface formation resulting from peripheral milling processes when tool vibrations are present. This model enables one to predict and minimize the roughness and location error of the flank surface. Comparisons between simulations and experiments show the effectiveness of this modeling approach. An important result of this research is that it has shown that milling at a stability maximum does not generally yield the best surface quality.  相似文献   

6.
Inconel 718 is a difficult-to-cut nickel-based superalloy commonly used in aerospace industry. This paper presents an experimental study of the tool wear propagation and cutting force variations in the end milling of Inconel 718 with coated carbide inserts. The experimental results showed that significant flank wear was the predominant failure mode affecting the tool life. The tool flank wear propagation in the up milling operations was more rapid than that in the down milling operations. The cutting force variation along with the tool wear propagation was also analysed. While the thermal effects could be a significant cause for the peak force variation within a single cutting pass, the tool wear propagation was believed to be responsible for the gradual increase of the mean peak force in successive cutting passes.  相似文献   

7.
An infrared radiation pyrometer with two optical fibers connected by a fiber coupler was developed and applied to the measurement of tool–chip interface temperature in end milling with a binderless CBN tool. The infrared rays radiated from the tool–chip interface and transmitted through the binderless CBN are accepted by the optical fiber inserted in the tool and are then sent to the pyrometer. A combination of the two fibers and the fiber coupler makes it possible to transmit the accepted rays to the pyrometer, which is set up outside of the machine tool. This method is very practical in end milling for measuring the temperature history at tool–chip interface during chip formation. The maximum tool–chip interface temperature in up milling of a 0.55% carbon steel is 480 °C when the cutting speed is 2.2 m/s and 560 °C at 4.4 m/s, and in the down milling, 500 °C at 2.2 m/s and 600 °C at 4.4 m/s.  相似文献   

8.
This paper presents a dynamic force model and a stability analysis for ball end milling. The concept of the equivalent orthogonal cutting conditions, applied to modeling of the mechanics of ball end milling, is extended to include the dynamics of cutting forces. The tool is divided into very thin slices and the cutting force applied to each slice is calculated and summed for all the teeth engaged. To calculate the instantaneous chip thickness of each tooth slice, the method of regenerative chip load calculation which accounts for the effects of both the surface undulations and the instantaneous deflection is used. To include the effect of the interference of the flank face of the tool with the finished surface of the work, the plowing force is also considered in the developed model. Experimental cutting forces are obtained using a five-axis milling machine with a rotary dynamometer. The developed dynamic model is capable of generating force and torque patterns with very good agreement with the experimental data. Stability of the ball end milling in the semi-finishing operation of die cavities is also studied in this paper. The tangential and radial forces predicted by the method of equivalent orthogonal condition are fitted by the equations Ft = Kt(Z)bhav and Fr = Kr(Z)Ft, where b is the depth of cut and hav is the average chip thickness along the cutting edge and Z is the tool axis coordinate. The polynomial functions Kt(Z) and Kr(Z) are the cutting force constants. The interdependency of the axial and radial depths of cut in ball end milling results in an iterative solution of the characteristic equation for the critical width of cut and spindle speed. In addition, due to different cutting characteristics of the cutting edge at different heights of the ball nose, stability lobes are represented by surfaces. Comparison of the time domain simulation for the shoulder removal process in die cavity machining with the analytical predictions shows that the proposed method is capable of accurate prediction of the stability lobes.  相似文献   

9.
基于分子动力学的基本原理,构建了钛的纳米切削分子动力学仿真模型。工件原子间采用嵌入原子势EAM(Embedded atom method),工件原子与刀具原子间采用Morse势函数,研究了在不同刃口半径和刀具前角条件下,钛纳米切削过程中工件形态、系统势能、切削力以及工件温度等的变化规律。结果表明:随着刀具刃口半径增大,加工表面粗糙度增加,切削力和工件温度降低,切屑变薄;当刀具前角由负值增加到正值,钛工件承受的压应力逐渐变为剪应力,正前角刀具更有利于切削,同时在不同的刀具前角下,切向力和法向力的大小也有显著变化。  相似文献   

10.
This paper is concerned with the combined cutting effects of both flank and bottom edges based on a systematic study of the cutting force in flat end milling of the titanium alloy. Besides the flank edge, the bottom edge of the cutter is also found to be an important factor influencing the cutting force distributions and can lead to uniform phase widths for non-zero cutting forces even under considerable cutter runout. One such phenomenon of uniform phase width induced by the bottom edge for the cutting force is deeply revealed. To do this, the models for characterizing the cutting force coefficients related to both edges are established based on the measured instantaneous cutting forces, and cutter runout is considered in the computation of process geometry parameters such as cutter/workpiece engagements and instantaneous uncut chip geometry parameters. Novel algorithms for identifying the cutter runout parameters and the bottom uncut chip width are also developed. Results definitely show that the flank cutting force coefficients can be treated as constants and that size effect obviously exists in the bottom cutting force coefficients that can be characterized by a power function of the bottom uncut chip width.The proposed model is validated through a comparative study with the existing model and experiments. From the outcomes of the current work, it is clearly seen that the prediction of cutting forces for titanium alloy can resort to the proposed model instead of traditional ones.  相似文献   

11.
D.W. Kang  C.M. Lee 《CIRP Annals》2014,63(1):109-112
Laser-assisted machining (LAM) has recently been evaluated as an effective process for machining of difficult-to-cut materials, such as ceramics. It is more difficult to reach a sufficient preheating temperature in laser-assisted milling than in turning. A newly developed back-and-forth preheating method is proposed to obtain proper temperature at the laser spot, which is preceding a cutting tool. Experiments were successfully performed using the calculated laser power and feed, as determined by using finite element analyses. In addition, a constitutive equation of the LAM is proposed. The proposed method and constitutive equation can be applied to the laser-assisted milling of ceramics.  相似文献   

12.
In this paper, a new methodology for the selection of the milling toolpaths on complex surfaces that minimize dimensional errors due to tool defection is presented. In this way, an improvement on the accuracy of milled surfaces is achieved. The methodology can be applied to both three and five axes milling. In the three axes case, it is based on the calculation of the minimum cutting force component that is related with the tool deflection. This component has been previously defined as that perpendicular to the tool axis and contained on the plane defined by the tool axis and the normal vector to the workpiece surface.Cutting forces are calculated for each 15° sense on the tangent plane to the milled surface, in a grid of control points defined by the user, both for dowmilling and upmilling. With this information there are two possibilities. First, select a general toolpath direction that minimizes the mean value of the tool deflection force on the surface, and bearing this in mind, the CAM operator can produce a CNC program which leads to an accuracy improvement. The second option is the selection of different milling directions at each control point. Joining these points, the minimum force lines are defined on the workpiece surface. These can be used as the master guides for the toolpath programming of a complete surface.In the case of five axes milling, the approach is different, because in this case the tool-axis orientation with respect to the workpiece surface may be changed using the two rotary axes. Therefore, for each workpiece area both tool-axis orientation and machining direction can be selected to keep tool deflection force below a threshold value.Some case studies of both techniques and in-deep discussion of results are presented. Applying this approach, in three axes milling dimensional errors fall down from 30 μm to below 4 μm. In five axes milling errors can be kept below 15 μm in most of the cases.  相似文献   

13.
End milling of die/mold steels is a highly demanding operation because of the temperatures and stresses generated on the cutting tool due to high workpiece hardness. Modeling and simulation of cutting processes have the potential for improving cutting tool designs and selecting optimum conditions, especially in advanced applications such as high-speed milling. The main objective of this study was to develop a methodology for simulating the cutting process in flat end milling operation and predicting chip flow, cutting forces, tool stresses and temperatures using finite element analysis (FEA). As an application, machining of P-20 mold steel at 30 HRC hardness using uncoated carbide tooling was investigated. Using the commercially available software DEFORM-2D™, previously developed flow stress data of the workpiece material and friction at the chip–tool contact at high deformation rates and temperatures were used. A modular representation of undeformed chip geometry was used by utilizing plane strain and axisymmetric workpiece deformation models in order to predict chip formation at the primary and secondary cutting edges of the flat end milling insert. Dry machining experiments for slot milling were conducted using single insert flat end mills with a straight cutting edge (i.e. null helix angle). Comparisons of predicted cutting forces with the measured forces showed reasonable agreement and indicate that the tool stresses and temperatures are also predicted with acceptable accuracy. The highest tool temperatures were predicted at the primary cutting edge of the flat end mill insert regardless of cutting conditions. These temperatures increase wear development at the primary cutting edge. However, the highest tool stresses were predicted at the secondary (around corner radius) cutting edge.  相似文献   

14.
Influence of feed, eccentricity and helix angle on surface roughness is presented for side milling operations with cylindrical tools. A model was developed to predict surface topography as well as different roughness parameters. Roughness topography was obtained for one specific tool having grinding errors and eccentricity, for different helix angles.It was found that, as feed increases the number of cutting edge marks on the workpiece’s surface per revolution maintains or increases. As grinding errors and eccentricity increase, the number of cutting edge marks tends to decrease. Regarding helix angle, it was observed that roughness profile does not change along the workpiece’s height if no helix angle is considered. When helix angle is considered and the tool has both high eccentricity and high runout due to grinding errors, roughness heterogeneity bands are observed. The bands’ pattern is repeated along each helix pitch. The higher the helix angle, the narrower the roughness heterogeneity bands become.  相似文献   

15.
The present paper investigates the effect of two variables, namely direction of parameterization and cutter diameter on process geometry, cutting forces, and surface error in peripheral milling of curved geometries. In machining of curved geometries where the curvature varies continuously along tool path, the process geometry variables, namely feed per tooth, engagement angle, and maximum undeformed chip thickness too vary along tool path. These variations will be different when a given geometry is machined from different parametric directions and with different cutter diameters. This difference in process geometry variations result in changed cutting forces and surface error along machined path. This aspect has been studied for variable curvature geometries by machining from both parametric directions and using cutters of different diameter. The computer simulation studies carried out show considerable amount of shift in the location of peak cutting forces with the change in cutting direction and cutter diameter, particularly in concave regions of workpiece geometry. A new parameter γ that relates the instantaneous curvature of workpiece with cutter radius is defined. The larger value of γ is an indicator of greater shift in the location of peak forces from the point of maximum curvature on the workpiece. The simulation results are validated by carrying out machining experiments with curved workpiece geometry and are found to be in good agreement.  相似文献   

16.
In cold die forging, a sever friction sliding is often locally caused on the tool surface. It is usually preferable to smoothly finish such a portion of the tool surface. Many studies have been performed to maintain good lubrication conditions by catching lubricants to micropockets of the tool surface. This research is aimed at the detailed FEM examination of how the tool surface roughness influences the friction coefficient, the local surface enlargement at the friction surface of material and solid lubricant thinning at the edge of tool–material interface.  相似文献   

17.
The effect of runout on the milling tool vibration and surface quality   总被引:2,自引:1,他引:1  
When milling with tools of a high length to diameter ratio, there is often a non negligible runout. Since those tools tend towards chatter because of their low stiffness, the effect of runout on the dynamic behavior of the tool must be considered. Runout adds an additional dynamic component to the tool vibration and thus to the dynamicly changing cutting forces. Furthermore runout affects the surface quality even in stable machining. This paper analyzes the effect of runout by simulation of the dynamic milling process and compares the results to experimental data. One aspect is the difference of the vibration patterns with and without runout. Furthermore, a method for the analysis of timeseries is presented in order to distinguish between chatter and runout. Another topic is the expected surface quality resulting from stable processes with runout. This surface is modeled, examined and compared to the one produced by a process without runout.  相似文献   

18.
The experimental study presented in this paper aims to select the most suitable cutting and offset parameter combination for the wire electrical discharge machining process in order to get the desired surface roughness value for the machined workpieces. A series of experiments have been performed on 1040 steel material of thicknesses 30, 60 and 80 mm, and on 2379 and 2738 steel materials of thicknesses 30 and 60 mm. The test specimens have been cut by using different cutting and offset parameter combinations of the “Sodick Mark XI A500 EDW” wire electrical discharge machine in the Middle East Technical University CAD/CAM/Robotics Center. The surface roughness of the testpieces has been measured by using a surface roughness measuring device. The related tables and charts have been prepared for 1040, 2379, 2738 steel materials. The tables and charts can be practically used for WEDM parameter selection for the desired workpiece surface roughness.  相似文献   

19.
PCBN刀具磨出负倒棱是为了加强刀具的刃口强度,以减少刀具加工时可能出现的破损情况。本文通过对PCBN刀具加工淬硬轴承钢GCr15的一系列试验数据加以分析,得出倒棱前角和切削力、刀具磨损之间的关系,进而得出在实际加工情况下应该采用的最佳倒棱前角值。试验表明:当倒棱前角取15度且切削速度为125m/s时,刀具具有最好的加工效果,不但切削力可以达到最小值,刀具磨损最轻,而且刀具寿命也达到了最大值。  相似文献   

20.
This paper is concerned with the experimental and numerical study of face milling of Ti-6Al-4 V titanium alloy. Machining is carried out by uncoated carbide cutters in the presence of an abundant supply of coolant. Experimental analysis is conducted by focusing on the measurement of specific cutting energy, surface integrity and tool performance. The experimental analysis is supplemented by simulations from a 3D finite element model (FEM) of face milling simulation where needed. A tool wear model parameterized from FEM predictions of the tool-chip interface temperature, contact stress and chip velocity is presented. Tool wear patterns are described in terms of various cutting conditions and the influence of tool wear on surface integrity is investigated. Tool wear predictions based on the 3D FEM simulation show good agreement with experimental tool wear measurements. The highest cutting speed realized for the cutting tool material is 182.9 m/min (600 sfpm). Good surface integrity in terms of favorable residual stress and surface finish is achieved under the machining conditions used with limited tool wear. Residual stresses imparted to the machined surface are shown to be compressive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号