首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过4组10根胶合木中长柱四面受火的耐火极限试验,研究截面尺寸、持荷水平、阻燃涂料等对胶合木中长柱耐火极限的影响规律。通过理论分析提出了胶合木中长柱基于炭化速度的耐火极限计算方法,并采用有限元软件建立了胶合木柱热力耦合数值分析模型。结果表明,随着持荷水平增加,四面受火胶合木柱耐火极限明显降低,当持荷比由30%增加至50%时,耐火极限平均降低24. 5 min;随着截面尺寸增加,四面受火胶合木柱耐火极限显著提高,当截面尺寸由200 mm×200 mm增加至300 mm×300 mm时,耐火极限平均增加28. 0 min;当胶合木柱表面采用阻燃涂料涂刷后,耐火极限平均增加4. 0 min。胶层、持荷水平和截面尺寸对试件内部距离边缘相同位置处的温度变化无明显影响,表面涂抹阻燃涂料可稍降低试件内部温度的上升速度。垂直胶层方向和平行胶层方向的炭化速度无明显差异,有阻燃涂料处理的木柱炭化速度略小于无阻燃涂料处理的木柱炭化速度。基于剩余截面法计算的四面受火胶合木中长柱耐火极限计算值与试验值的相对误差绝对值的平均值为6. 5%,基本满足工程精度要求。有限元模拟得到的耐火极限与试验值的平均相对误差为8....  相似文献   

2.
木柱受火后截面演化为三个区域:外侧为漆黑的炭化层,承载力完全丧失;中间为深灰的高温分解层,承载力明显劣化;内部为颜色不变的正常层,承载力无变化。通过5组24根木柱四面受火后力学性能的对比试验研究,了解不同受火时间后木柱剩余承载力、延性、破坏形态和炭化速度的变化过程。研究结果表明,受火后木柱剩余承载力显著降低,受火木柱的初始刚度均明显低于对比试件,部分截面较小的受火木柱发生偏压破坏。四面受火后木柱承载力下降原因主要包括:受火使木柱表面炭化,木柱有效面积减小;受火后靠近炭化层的高温分解层木材强度明显劣化;随着受火时间增加,木柱截面长细比增加导致其稳定系数降低;部分木柱由于局部裂缝使炭化不均,使受火后木柱的破坏形态由轴压转变为偏压破坏。受火木柱表面有裂缝处及角部的炭化速度加大;随着含水率降低,炭化速度有所增加;随着受火时间增加,炭化速度有所降低。  相似文献   

3.
通过6根四面受火木柱耐火极限的对比试验,研究不同持荷水平、是否采用石灰膏抹面对木柱耐火极限的影响。研究结果表明,四面受火木柱耐火极限随着荷载水平的增加而明显降低。采用石灰膏抹面后,其耐火极限有所增加。石灰膏抹面能有效降低四面受火木柱内的温升梯度,延缓木柱开始炭化的时间,降低炭化速度。  相似文献   

4.
装配式竹结构房屋受火试验研究与模拟分析   总被引:1,自引:0,他引:1  
为研究装配式竹结构房屋的抗火性能和对比常规轻钢活动房的耐火极限,课题组对实体装配式竹结构房屋和相同尺寸的轻钢活动房进行了受火对比试验。受火试验前在竹结构和轻钢活动房的屋顶和墙体内外安装热电偶,并通过温度变送器连接到记录仪进行等时采集,受火试验进行30min后中止试验并进行火灾后现场观测与数据分析。同时采用火灾动力模拟软件FDS(fire dynamics simulator),对足尺模型房屋进行了模拟研究和分析。试验结果和模拟分析结果表明:竹结构墙体具有良好的隔热阻燃功能,能够有效阻止火势蔓延和热量扩散,与轻钢活动板房相比,装配式竹结构房屋具有更好的安全性和抗火性。图10表1参15  相似文献   

5.
木梁四面受火炭化速度及剩余受弯承载力试验研究   总被引:1,自引:0,他引:1  
为研究我国常用树种木构件的抗火性能,进行了4组共12根木梁四面受火试验、以及受火后的剩余受弯承载力试验研究。结果表明,木梁有效面积因受火炭化而减小,边角棱角不再存在,呈圆弧状,靠近炭化层的高温分解层木材强度明显劣化;表面无防火措施木梁的平均水平炭化速度为0.827mm/min,平均竖向碳化速度为0.848mm/min;受火木梁受弯试验过程中跨中截面基本符合平截面假定,破坏模式基本同对比木梁;极限承载力、极限位移、刚度、弯曲弹性模量随着受火时间增加而减小;防火涂料能有效降低炭化速度,提高受火后剩余承载力、极限位移、刚度,防火效果显著。  相似文献   

6.
为研究工程竹木梁受弯性能,设计足尺花旗松胶合木梁、胶合竹梁、重组竹梁和胶合竹木梁试件进行受弯性能试验,分析试件破坏模式、承载力、变形特点。试验结果表明,4种梁破坏均由下部纤维在跨中被拉断引起,与胶合木梁易受木节等缺陷的影响相比,工程竹梁和胶合竹木梁力学性能更稳定;胶合竹梁、重组竹梁和胶合竹木梁极限荷载平均值分别较花旗松胶合木梁提高28%,91%,38%,达到极限荷载时的跨中位移平均值分别提高94%,63%,118%;胶合竹木梁极限荷载及达到极限荷载时的跨中位移均略大于胶合竹梁,表明通过工程竹材与速生木材的组合使用,胶合竹木梁受弯性能得到增强,胶合竹强度和变形能力得到充分利用。  相似文献   

7.
通过2组7根胶合木梁三面受火后力学性能的对比试验,研究了不同表面处理和不同受火时间后胶合木梁的破坏形态、剩余承载力和应变的变化规律。研究表明,胶合木梁剩余承载力随受火时间增加而明显降低,受火20~40min后剩余承载力显著降低;表面有阻燃涂料处理试件剩余承载力略大于无阻燃涂料处理试件。未受火对比试件和受火后试件跨中截面应变分布均符合平截面假定;相同荷载作用下,受火后试件梁底和梁顶的应变均大于未受火对比试件。采用基于ABAQUS二次开发的木材本构模型,能准确预测木材内部温度在100℃左右时的平台段,且距离受火面越远平台段越长;水平和竖向炭化深度模拟值与试验值误差为8.6%~14.0%,能较准确地模拟胶合木梁的炭化深度;胶合木梁受火后剩余承载力模拟值与试验值吻合较好,可用于胶合木梁三面受火后剩余承载力的评估。  相似文献   

8.
木梁受火后由于炭化作用将使其有效截面减少、承载能力降低.通过2组11根木梁三面受火后力学性能的对比试验研究,分析了石灰膏抹面对木梁火灾性能影响.研究结果表明:对比木梁、三面受火无石灰膏抹面木梁和三面受火有石灰膏抹面木梁的破坏形态基本相似;三面受火30min的石灰膏抹面木梁由于含水率降低且木材未遭受炭化损伤,其承载力反而...  相似文献   

9.
研究了采用防火板保护钢柱四面受火时的截面温度计算方法,分别考虑了防火板与钢柱无间隙及防火板与钢柱有间隙两种情况。由于采用防火板保护时,钢构件与防火保护层内表面之间主要通过热辐射进行热量传递,与现行欧洲规范(EC 3)公式假定构件防火保护层之间通过热传导进行热量传递不同。现行EC 3规范公式能较为准确地计算热传导系数较小的防火涂料保护时构件升温,但不能准确计算火灾下热传导系数较大的防火薄型板保护钢柱的温度。通过在现行规范公式中增加空气的热阻一项,以考虑热辐射传热方式对构件截面升温的影响。分别采用有限元方法和建议公式,对防火薄型板保护,不同保护层厚度和不同截面系数钢柱截面升温规律进行分析,结果表明修正公式的计算结果与有限元结果吻合良好。  相似文献   

10.
以经防火涂料处理前后的重组竹为研究对象,测试重组竹在不同受火时间后的抗压强度、抗剪强度、抗弯强度及残余质量。以木材为比较对象,采用差示扫描量热(DSC)和热重-微分热重(TG-DTG)方法分析重组竹、防火涂料及云杉-松木-冷杉(SPF)的热流量和质量随温度的变化过程。结果表明:相比于未经防火涂料处理的重组竹,经防火涂料处理后的重组竹力学性能和质量随受火时间的延长下降速率均明显减小;重组竹的热稳定性优于SPF;防火涂料在高温下吸热膨胀形成碳质泡沫,具有较好的热稳定性,可以起到很好的防火作用。  相似文献   

11.
梁拥军  赵军 《山西建筑》2009,35(30):72-73
应用ANSYS软件计算了钢柱在标准的升温模式下的温度场,分析了在三面受火作用下钢柱截面的温度变化情况,然后利用ANSYS的耦合分析,将温度场导入结构分析中,进一步分析研究了在火灾下的钢柱截面温度分布对钢柱耐火临界温度的影响。  相似文献   

12.
为研究正交胶合木-混凝土组合楼板的耐火极限,设计并制作了4个正交胶合木-混凝土组合楼板试件和2个正交胶合木楼板对比试件,分别进行常温下受弯加载试验、持荷耐火极限试验和数值模拟。结果表明:常温下正交胶合木楼板的破坏模式主要包括底部规格材的顺纹受拉断裂破坏、上下两层规格材之间横纹劈裂破坏和中部规格材的滚剪破坏;常温下正交胶合木-混凝土组合楼板的破坏模式包括现浇混凝土层与正交胶合木板的界面发生剪切破坏和底部规格材顺纹受拉断裂破坏;常温下正交胶合木-混凝土组合楼板的初始刚度和受弯承载力比正交胶合木楼板的分别提高了237.8%和60.1%。受火后,正交胶合木板底发生了明显炭化,正交胶合木-混凝土组合楼板发生了明显的受弯变形。在荷载比相同的条件下,正交胶合木-混凝土组合楼板的耐火极限比正交胶合木楼板的提高了335.3%;随着荷载比由0.20增加至0.50时,试件耐火极限由74.1 min降低至30.6 min。正交胶合木-混凝土组合楼板耐火极限的数值模拟精度误差在14.1%以内,满足工程精度要求。  相似文献   

13.
紫外线是导致材料老化的主要因素之一,通过人工加速老化试验,模拟太阳光中的紫外线辐射,加上温湿度循环变化的影响,测试未经防护处理的工程竹的物理力学性能,并与花旗松木材在紫外线辐射下的物理力学性能变化进行对比,评价胶合竹、重组竹、花旗松木材试样的抗紫外线老化性能。结果表明,花旗松木材颜色对紫外线辐射比较敏感,受辐射面有明显的颜色变深,在紫外线辐射下胶合竹也发生颜色变黄但没有花旗松木材严重,重组竹的颜色变化不明显;除顺纹抗压强度胶合竹降幅最大外,顺纹抗压弹性模量、顺纹抗拉强度、抗弯强度、抗弯弹性模量均为花旗松木材降幅最大。总体来说,重组竹的抗紫外线老化性能最优,但胶合竹、重组竹、花旗松木材这三种材料在紫外线辐射作用下均有不同程度的力学性能退化,用于室外环境时需要进行防护处理。  相似文献   

14.
对9 m长足尺胶合木梁的受弯性能和炭化速度进行试验研究。结果表明:足尺胶合木梁发生源于纯弯区段木材或连接缺陷的弯曲破坏;跨中截面沿高度方向应变变化符合平截面假定;理论分析和数值模拟方法均可较准确地预测木梁的受弯承载力;数值模拟方法还可以较准确地模拟木梁破坏全过程的变形情况。实测胶合木梁在ISO 834升温曲线下的炭化速度为0.7 mm/min,与欧洲规范一致,略小于GB/T 50708—2012《胶合木结构技术规范》的规定值,说明胶合木梁具有可靠的耐火性能。  相似文献   

15.
为了研究钢筋工程水泥基复合材料(ECC)复合受扭柱的抗震性能,完成了4个ECC柱和1个钢筋混凝土(RC)柱在低周反复荷载作用下的试验。在此基础上,采用有限元软件ABAQUS对钢筋ECC复合受扭柱进行了数值分析。试验结果表明:在复合受扭作用下,5个试件的扭矩T-扭率θ滞回曲线均呈反S形且捏缩现象明显;增加纤维体积率、减少箍筋间距、适当增大剪跨比均能减缓试件强度与刚度的退化;同等参数条件下,钢筋ECC柱峰值扭矩和累计耗能能力分别是RC柱的1.65倍和6.89倍,表明了钢筋ECC柱滞回性能要优于RC柱。此外,钢筋ECC柱的滞回曲线模拟结果与试验结果基本吻合,说明采用ABAQUS来模拟钢筋ECC复合受扭柱的抗震性能是可行的。最后,利用此方法研究了不同参数对钢筋ECC复合受扭柱抗震性能的影响规律。  相似文献   

16.
为了研究受火后活性粉末混凝土(RPC)构件的力学行为及其变形性能,完成5根受火后钢筋RPC简支梁受弯试验,获得了梁的正截面剩余承载力、荷载-跨中位移曲线及裂缝发展规律,考察了配筋率、荷载水平、受火时间等因素对受火后钢筋RPC简支梁受力性能的影响,并将试验结果与常温下受力性能进行对比分析.结果 表明:配筋率为2.20% ...  相似文献   

17.
在标准火灾条件下进行钢骨混凝土柱的耐火试验。以几何尺寸、三面或四面受火、荷载大小及偏心为参数,研究其对钢骨混凝土耐火性能的影响。结果表明:钢骨混凝土柱三面受火条件下的耐火性能高于四面受火;载荷比和荷载偏心的影响可以忽略;混凝土的剥落降低了柱耐火性能。将试验结果与现有规范进行对比可知,某些条件下,按规范计算的耐火性能可能偏高。  相似文献   

18.
胶合竹木梁抗弯性能试验研究   总被引:3,自引:0,他引:3  
以重组竹、胶合竹和云杉为层板材料,设计制作10组共计30根由六层层板胶合成的胶合竹木梁试件,并对其进行受弯性能试验,试验参数包括工程竹种类、层数、布置位置等;分析了各组试件的破坏模式、等效弹性模量、屈服荷载、承载力、变形能力及应变分布,通过不同胶合竹木梁组合方式的对比,提出最优组合方案;并根据组合梁的应变分布和简化本构关系,采用分层叠加法计算了各种层板组合方式胶合竹木梁的受弯承载力,同时对层板间胶层抗剪强度需求进行了分析。结果表明,在云杉胶合木梁的受拉一侧胶合工程竹板后,胶合竹木梁破坏时的变形能力较相同尺寸的纯云杉胶合木梁有明显提升,提升幅度为64.8%~123.9%;而在云杉胶合木梁的拉压区都胶合工程竹板后,承载能力和变形能力较相同尺寸的纯云杉胶合木梁都有显著提升,承载力提升幅度为63.9%~97.0%,破坏时的变形能力提升幅度为124.8%~167.5%;上部一层和下部两层木板替换成工程竹板后,承载力较纯云杉胶合木梁提高了82.3%,基本接近纯工程竹梁的力学性能,是较优的层板组合方案。  相似文献   

19.
木梁三面受火后截面分为三个区:外侧为炭化层,承载力完全丧失;中间为高温分解层,承载力明显劣化;内部为正常层,承载力无影响。通过4组15根木梁三面受火后力学性能的对比试验研究,了解不同受火时间后木梁剩余承载力、破坏形态和炭化速度的变化。研究结果表明,三面受火后木梁初始刚度明显降低,剩余承载力显著减小。三面受火后木梁承载力下降原因主要包括:受火后木梁表面炭化使有效面积减小,中和轴上升;受火后靠近炭化层的高温分解层木材强度明显劣化。由于角部遭受两个方向的热传递,使木梁下角部炭化加速后变为弧形。随着受火时间增加,木梁炭化速度有所降低;且竖向炭化速度略大于水平炭化速度。  相似文献   

20.
建筑用绝热金属面夹芯板受火时隔热性能研究   总被引:1,自引:0,他引:1  
通过对夹芯板受火时隔热性能进行有限元分析研究,得到不同厚度岩棉夹芯板和聚苯乙烯泡沫EPS及聚氨酯TPU夹芯板的耐火极限,并与试验值进行对比;最后,针对通常不符合防火下隔热要求的夹芯板提出改进措施,以满足规范要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号