首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Based on the strategy of the “tail approach”, 15 novel saccharide-modified sulfonamides were designed and synthesised. The novel compounds were evaluated as inhibitors of three human carbonic anhydrase (CA) isoforms, namely cytoplasmic CA II, transmembrane CA IX, and XII. Most of these compounds showed good activity against CAs and high topological polar surface area (TPSA) values, which had a positive effect on the selective inhibition of transmembrane isoforms CA IX and XII. In the in vitro activity studies, compounds 16a, 16b, and 16e reduced the viability of HT-29 and MDA-MB-231 cells with a high expression of CA IX under hypoxia. The inhibitory activity of compound 16e on the human osteosarcoma cell line MG-63 with a high expression of CA IX and XII was better than that of AZM. Moreover, high concentrations of compounds 16a and 16b reversed the acidification of the tumour microenvironment. In addition, compound 16a had a certain inhibitory effect on the migration of MDA-MB-231 cells. All the above results indicate that the saccharide-modified sulfonamide has further research value for the development of CA IX inhibitors.  相似文献   

2.
Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the essential reaction of CO2 hydration in all living organisms, being actively involved in the regulation of a plethora of patho/physiological conditions. A series of chromene-based sulfonamides were synthesized and tested as possible CA inhibitors. Their inhibitory activity was assessed against the cytosolic human isoforms hCA I, hCA II and the transmembrane hCA IX and XII. Several of the investigated derivatives showed interesting inhibition activity towards the tumor associate isoforms hCA IX and hCA XII. Furthermore, computational procedures were used to investigate the binding mode of this class of compounds, within the active site of hCA IX.  相似文献   

3.
Hypoxia-regulated protein carbonic anhydrase IX (CA IX) is up-regulated in different tumor entities and correlated with poor prognosis in breast cancer patients. Due to the radio- and chemotherapy resistance of solid hypoxic tumors, derivatives of betulinic acid (BA), a natural compound with anticancer properties, seem to be promising to benefit these cancer patients. We synthesized new betulin sulfonamides and determined their cytotoxicity in different breast cancer cell lines. Additionally, we investigated their effects on clonogenic survival, cell death, extracellular pH, HIF-1α, CA IX and CA XII protein levels and radiosensitivity. Our study revealed that cytotoxicity increased after treatment with the betulin sulfonamides compared to BA or their precursors, especially in triple-negative breast cancer (TNBC) cells. CA IX activity as well as CA IX and CA XII protein levels were reduced by the betulin sulfonamides. We observed elevated inhibitory efficiency against protumorigenic processes such as proliferation and clonogenic survival and the promotion of cell death and radiosensitivity compared to the precursor derivatives. In particular, TNBC cells showed benefit from the addition of sulfonamides onto BA and revealed that betulin sulfonamides are promising compounds to treat more aggressive breast cancers, or are at the same level against less aggressive breast cancer cells.  相似文献   

4.
There is a need to develop identification tests for Metabolism Disrupting Chemicals (MDCs) with diabetogenic activity. Here we used the human EndoC-βH1 β-cell line, the rat β-cell line INS-1E and dispersed mouse islet cells to assess the effects of endocrine disruptors on cell viability and glucose-stimulated insulin secretion (GSIS). We tested six chemicals at concentrations within human exposure (from 0.1 pM to 1 µM). Bisphenol-A (BPA) and tributyltin (TBT) were used as controls while four other chemicals, namely perfluorooctanoic acid (PFOA), triphenylphosphate (TPP), triclosan (TCS) and dichlorodiphenyldichloroethylene (DDE), were used as “unknowns”. Regarding cell viability, BPA and TBT increased cell death as previously observed. Their mode of action involved the activation of estrogen receptors and PPARγ, respectively. ROS production was a consistent key event in BPA-and TBT-treated cells. None of the other MDCs tested modified viability or ROS production. Concerning GSIS, TBT increased insulin secretion while BPA produced no effects. PFOA decreased GSIS, suggesting that this chemical could be a “new” diabetogenic agent. Our results indicate that the EndoC-βH1 cell line is a suitable human β-cell model for testing diabetogenic MDCs. Optimization of the test methods proposed here could be incorporated into a set of protocols for the identification of MDCs.  相似文献   

5.
A new series of quinoline-based benzenesulfonamides (QBS) were developed as potential carbonic anhydrase inhibitors (CAIs). The target QBS CAIs is based on the 4-anilinoquinoline scaffold where the primary sulphonamide functionality was grafted at C4 of the anilino moiety as a zinc anchoring group (QBS 13a–c); thereafter, the sulphonamide group was switched to ortho- and meta-positions to afford regioisomers 9a–d and 11a–g. Moreover, a linker elongation approach was adopted where the amino linker was replaced by a hydrazide one to afford QBS 16. All the described QBS have been synthesized and investigated for their CA inhibitory action against hCA I, II, IX and XII. In general, para-sulphonamide derivatives 13a–c displayed the best inhibitory activity against both cancer-related isoforms hCA IX (KIs = 25.8, 5.5 and 18.6 nM, respectively) and hCA XII (KIs = 9.8, 13.2 and 8.7 nM, respectively), beside the excellent hCA IX inhibitory activity exerted by meta-sulphonamide derivative 11c (KI = 8.4 nM). The most promising QBS were further evaluated for their anticancer and pro-apoptotic activities on two cancer cell lines (MDA-MB-231 and MCF-7). In addition, molecular docking simulation studies were applied to justify the acquired CA inhibitory action of the target QBS.  相似文献   

6.
A novel series of coumarin–thiadiazole hybrids, derived from substituted coumarin-3-carboxylic acids was isolated and fully characterized with the use of a number of spectroscopic techniques and XRD crystallography. Several of the novel compounds showed intensive fluorescence in the visible region, comparable to that of known coumarin-based fluorescence standards. Moreover, the new compounds were tested as potential antineurodegenerative agents via their ability to act as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitors. Compared to the commercial standards, only a few compounds demonstrated moderate AChE and BuChE activities. Moreover, the novel derivatives were tested for their antimicrobial activity against a panel of pathogenic bacterial and fungal species. Their lack of activity and toxicity across a broad range of biochemical assays, together with the exceptional emission of some hybrid molecules, highlights the possible use of a number of the novel hybrids as potential fluorescence standards or fluorescence imaging agents.  相似文献   

7.
A novel class of potential protein kinase inhibitors 7–16 was synthesized in high yields using various substituted purines. The most promising compounds, 7 and 10, exhibited inhibitory activity against seven cancer cell lines. The IC50 values for compounds 7 and 10 were 2.27 and 2.53 μM for K562 cells, 1.42 and 1.52 μM for HL-60 cells, and 4.56 and 24.77 μM for OKP-GS cells, respectively. In addition, compounds 7 and 10 dose-dependently induced the apoptosis and cell cycle arrest at G2/M phase, preventing the cell division of OKP-GS cells. Compounds 7, 9, and 10 showed 36–45% inhibitory activity against PDGFRα and PDGFRβ at the concentration of 1 μM. Molecular modeling experiments showed that obtained compounds could bind to PDGFRα as either type 1 (compound 7, ATP-competitive) or type 2 (compound 10, allosteric) inhibitors, depending on the substituent in the amide part of the molecule.  相似文献   

8.
This review describes recent progress in the design and development of inhibitors of human carbonic anhydrase IX (CA IX) based on space-filling carborane and cobalt bis(dicarbollide) clusters. CA IX enzyme is known to play a crucial role in cancer cell proliferation and metastases. The new class of potent and selective CA IX inhibitors combines the structural motif of a bulky inorganic cluster with an alkylsulfamido or alkylsulfonamido anchor group for Zn2+ ion in the enzyme active site. Detailed structure-activity relationship (SAR) studies of a large series containing 50 compounds uncovered structural features of the cluster-containing inhibitors that are important for efficient and selective inhibition of CA IX activity. Preclinical evaluation of selected compounds revealed low toxicity, favorable pharmacokinetics and ability to reduce tumor growth. Cluster-containing inhibitors of CA IX can thus be considered as promising candidates for drug development and/or for combination therapy in boron neutron capture therapy (BNCT).  相似文献   

9.
In recent decades, human carbonic anhydrase inhibitors (hCAIs) have emerged as an important therapeutic class with various applications including antiglaucoma, anticonvulsants, and anticancer agents. Herein, a novel series of indole-based benzenesulfonamides were designed, synthesized, and biologically evaluated as potential hCAIs. A regioisomerism of the sulfonamide moiety was carried out to afford a total of fifteen indole-based benzenesulfonamides possessing different amide linkers that enable the ligands to be flexible and develop potential H-bond interaction(s) with the target protein. The activity of the synthesized compounds was evaluated against four hCA isoforms (I, II, IX and, XII). Compounds 2b, 2c, 2d, 2f, 2h and 2o exhibited potent and selective profiles over the hCA II isoform with Ki values of 7.3, 9.0, 7.1, 16.0, 8.6 and 7.5 nM, respectively. Among all, compound 2a demonstrated the most potent inhibition against the hCA II isoform with an inhibitory constant (Ki) of 5.9 nM, with 13-, 34-, and 9-fold selectivity for hCA II over I, IX and XII isoforms, respectively. Structure–activity relationship data attained for various substitutions were rationalized. Furthermore, a molecular docking study gave insights into both inhibitory activity and selectivity of the target compounds. Accordingly, this report presents a successful scaffold hoping approach that reveals compound 2a as a highly potent and selective indole-based hCA II inhibitor worthy of further investigation.  相似文献   

10.
The immunomodulating effects of isolated proanthocyanidin-rich fractions, procyanidins C1, B5 and B2 and anthocyanins of Aronia melanocarpa were investigated. In this work, the complement-modulating activities, the inhibitory activities on nitric oxide (NO) production in LPS-induced RAW 264.7 macrophages and effects on cell viability of these polyphenols were studied. Several of the proanthocyanidin-rich fractions, the procyanidins C1, B5 and B2 and the cyanidin aglycone possessed strong complement-fixing activities. Cyanidin 3-glucoside possessed stronger activity than the other anthocyanins. Procyanidins C1, B5 and B2 and proanthocyanidin-rich fractions having an average degree of polymerization (PD) of 7 and 34 showed inhibitory activities on NO production in LPS-stimulated RAW 264.7 mouse macrophages. All, except for the fraction containing proanthocyanidins with PD 34, showed inhibitory effects without affecting cell viability. This study suggests that polyphenolic compounds of A. melanocarpa may have beneficial effects as immunomodulators and anti-inflammatory agents.  相似文献   

11.
The synthesis and carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity of two series of aromatic sulfonamides and their Cu(II) derivatives, incorporating metal-complexing moieties of the DTPA, DOTA, and TETA type are reported. The new compounds were designed in such a way as to possess high affinity for Cu(II) ions, exploiting four pendant carboxylate moieties in the DTPA derivatives, as well as the cyclen/cyclam macrocyles, and three pendant acetate moieties in the DOTA and TETA derivatives. The new derivatives showed modest inhibition of the cytosolic isoform CA I (K(I) values in the range of 66-2130 nM), were better CA II inhibitors (K(I) values in the range of 21-360 nM), and excellent inhibitors of the tumor-associated isoform CA IX (K(I) values in the range of 4.1-110 nM), with selectivity ratios for the inhibition of the tumor (CA IX) over the cytosolic (CA II) isozyme in the range of 10.74-20.88 for the best derivatives. Copper complexes were more inhibitory than the corresponding ligand sulfonamides, and showed membrane impermeability, thus, having the possibility to specifically target the transmembrane CA IX that has an extracellular active site. Incorporation of radioactive copper isotopes in this type of CA inhibitor may lead to interesting diagnostic/therapeutic applications for such compounds.  相似文献   

12.
In this study, 22 novel compounds were designed and synthesized by acetamide bridge chains, among which 5 a – 5 k were monosubstituted compounds, and 6 a – 6 k were disubstituted. A series of biological evaluations was then carried out to determine the carbonic anhydrase inhibitory activity, neuroprotective effects and cytotoxicity of 5 a – 5 k and 6 a – 6 k . The results showed that some compounds could protect PC12 cells from sodium nitroprusside (SNP)-induced damage. In terms of the neuroprotection and inhibitory activity against carbonic anhydrase II, monosubstituted compounds were better than disubstituted. Compound 5 c exhibited better protective effect in PC12 cells than that of edaravone, and 5 c also showed less cytotoxicity. In addition, compound 5 c was found to be the most effective selective carbonic anhydrase II inhibitor (IC50=16.7 nM, CAI/CAII=54.3), which was similar to the inhibitory effect of acetazolamide. Moreover, the selectivity of compound 5 c was better than that of acetazolamide (IC50=12.0 nM, CAI/CAII=20.8). Molecular docking presented that the binding effect of compound 5 c with carbonic anhydrase II was superior to that of 5 c with carbonic anhydrase I and IX, which was consistent with the inhibitory results. Based on above findings, compound 5 c may be a potential candidate for selective carbonic anhydrase II inhibitor, and it had obviously neuroprotective effect and great advantages in drug safety.  相似文献   

13.
At present, inhibitors of α/β‐hydrolase domain 6 (ABHD6) are viewed as a promising approach to treat inflammation and metabolic disorders. This article describes the development of 1,2,5‐thiadiazole carbamates as ABHD6 inhibitors. Altogether, 34 compounds were synthesized, and their inhibitory activity was tested using lysates of HEK293 cells transiently expressing human ABHD6 (hABHD6). Among the compound series, 4‐morpholino‐1,2,5‐thiadiazol‐3‐yl cyclooctyl(methyl)carbamate (JZP‐430) potently and irreversibly inhibited hABHD6 (IC50=44 nM ) and showed ~230‐fold selectivity over fatty acid amide hydrolase (FAAH) and lysosomal acid lipase (LAL), the main off‐targets of related compounds. Additionally, activity‐based protein profiling indicated that JZP‐430 displays good selectivity among the serine hydrolases of the mouse brain membrane proteome. JZP‐430 has been identified as a highly selective, irreversible inhibitor of hABHD6, which may provide a novel approach in the treatment of obesity and type II diabetes.  相似文献   

14.
A new series of 4-(1H-benzo[d]imidazol-1-yl)pyrimidin-2-amine linked sulfonamide derivatives 12a–n was designed and synthesized according to the structure of well-established V600EBRAF inhibitors. The terminal sulfonamide moiety was linked to the pyrimidine ring via either ethylamine or propylamine bridge. The designed series was tested at fixed concentration (1 µM) against V600EBRAF, finding that 12e, 12i and 12l exhibited the strongest inhibitory activity among all target compounds and 12l had the lowest IC50 of 0.49 µM. They were further screened on NCI 60 cancer cell lines to reveal that 12e showed the most significant growth inhibition against multiple cancer cell lines. Therefore, cell cycle analysis of 12e was conducted to investigate the effect on cell cycle progression. Finally, virtual docking studies was performed to gain insights for the plausible binding modes of vemurafenib, 12i, 12e and 12l.  相似文献   

15.
Alcohol increases the risk of carcinoma originated from oral epithelium, but the biological effects of ultra-low doses of ethanol on existing carcinoma cells in combination with natural substances are still unclear. A role for ethanol (EtOH), taken in small amounts as an ingredient of some beverages or mouthwashes to change the growth behavior of established squamous cell carcinoma, has still not been examined sufficiently. We designed an in vitro study to determine the effect of caffeic acid (CFA) on viability and migration ability of malignant oral epithelial keratinocytes, exposed to ultra-low concentrations (maximum 100 mmol/L) EtOH. MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-dimethyltetrazolium bromide) and LDH (lactate dehydrogenase) assays were used to assess the cytotoxic effect of EtOH/CFA and the viability of squamous carcinoma SCC-25 cells (ATCC CRL-1628, mobile part of the tongue). Tested EtOH concentrations were: 2.5, 5, 10, 25, 50, and 100 mmol/L, along with an equal CFA concentration of 50 μmol/L. Carcinoma cells’ migration was investigated by monolayer “wound” healing assay. We demonstrated that very low concentrations of EtOH ranging between 2.5 and 10 mmol/L may induce the viability of oral squamous cell carcinoma cells, while the results following addition of CFA reveal an antagonistic effect, attenuating pro-proliferative EtOH activity. The migration rate of oral squamous carcinoma cells can be significantly inhibited by the biological activity of caffeic acid.  相似文献   

16.
A series of 3,3-diethylazetidine-2,4-dione based thiazoles 3a–3j were designed and synthesized as new human neutrophil elastase (HNE) inhibitors in nanomolar range. The representative compounds 3c, 3e, and 3h exhibit high HNE inhibitory activity with IC50 values of 35.02–44.59 nM, with mixed mechanism of action. Additionally, the most active compounds 3c and 3e demonstrate high stability under physiological conditions. The molecular docking study showed good correlation of the binding energies with the IC50 values, suggesting that the inhibition properties are largely dependent on the stage of ligand alignment in the binding cavity. The inhibition properties are correlated with the energy level of substrates of the reaction of ligand with Ser195. Moreover, most compounds showed high and broad-spectrum antiproliferative activity against human leukemia (MV4-11), human lung carcinoma (A549), human breast adenocarcinoma (MDA-MB-231), and urinary bladder carcinoma (UMUC-3), with IC50 values of 4.59–9.86 μM. Additionally, compounds 3c and 3e can induce cell cycle arrest at the G2/M phase and apoptosis via caspase-3 activation, leading to inhibition of A549 cell proliferation. These findings suggest that these new types of drugs could be used to treat cancer and other diseases in which immunoreactive HNE is produced.  相似文献   

17.
Semi-synthetic triterpenoids, holding an amino substituted seven-membered A-ring (azepano-ring), which could be synthesized from triterpenic oximes through a Beckmann type rearrangement followed by a reduction of lactame fragment, are considered to be novel promising agents exhibiting anti-microbial, alpha-glucosidase, and butyrylcholinesterase inhibitory activities. In this study, in an attempt to develop new antitumor candidates, a series of A-ring azepano- and 3-amino-3,4-seco-derivatives of betulin, oleanolic, ursolic, and glycyrrhetinic acids were evaluated for their cytotoxic activity against five human cancer cell lines and non-malignant mouse fibroblasts by means of a colorimetric sulforhodamine assay. Azepanoallobetulinic acid amide derivative 11 was the most cytotoxic compound of this series but showed little selectivity between the different human tumor cell lines. Flow cytometry experiments showed compound 11 to act mainly by apoptosis (44.3%) and late apoptosis (21.4%). The compounds were further screened at the National Cancer Institute towards a panel of 60 cancer cell lines. It was found that compounds 3, 4, 7, 8, 9, 11, 15, 16, 19, and 20 showed growth inhibitory (GI50) against the most sensitive cell lines at submicromolar concentrations (0.20–0.94 μM), and their cytotoxic activity (LC50) was also high (1–6 μM). Derivatives 3, 8, 11, 15, and 16 demonstrated a certain selectivity profile at GI50 level from 5.16 to 9.56 towards K-562, CCRF-CEM, HL-60(TB), and RPMI-8226 (Leukemia), HT29 (Colon cancer), and OVCAR-4 (Ovarian cancer) cell lines. Selectivity indexes of azepanoerythrodiol 3 at TGI level ranged from 5.93 (CNS cancer cell lines SF-539, SNB-19 and SNB-75) to 14.89 for HCT-116 (colon cancer) with SI 9.56 at GI50 level for the leukemia cell line K-562. The present study highlighted the importance of A-azepano-ring in the triterpenic core for the development of novel antitumor agents, and a future aim to increase the selectivity profile will thus lie in the area of modifications of azepano-triterpenic acids at their carboxyl group.  相似文献   

18.
Two novel sulfaguanidine series, six N-(N,N′-dialkyl/dibenzyl-carbamimidoyl) benzenesulfonamide derivatives and nine N-(N-alkyl/benzyl-carbamimidoyl) benzenesulfonamide derivatives, were obtained by desulfidative amination of easily accessible dimethyl arylsulfonylcarbonimidodithioates under catalyst- and base-free conditions. The newly synthesized compounds were tested for the inhibition of four different isozymes of human carbonic anhydrase (hCA I, II, IX and XII, EC 4.2.1.1). Both series reported here were inactive against the off-target isozymes hCA I and II (Ki>100 μM). Interestingly, all investigated compounds inhibited both target isozymes hCA IX and XII in the submicromolar to micromolar ranges in which Ki values spanned from 0.168 to 0.921 μM against hCA IX and from 0.335 to 1.451 μM against hCA XII. The results indicated that N-(N-alkyl/benzyl-carbamimidoyl) benzenesulfonamides were slightly more potent inhibitors than N-(N,N′-dialkyl/dibenzyl-carbamimidoyl) benzenesulfonamides. Among the evaluated compounds, N-n-octyl-substituted N-carbamimidoylbenzenesulfonamide showed the most significant activity with a Ki value of 0.168 μM against hCA IX, which was four-fold more selective toward this isozyme versus hCA XII. Again, another derivative from N-(N-alkyl/benzyl-carbamimidoyl) benzenesulfonamide series, N-p-methylbenzyl-substituted N-carbamimidoylbenzenesulfonamide, demonstrated superior inhibitory activity against hCA XII with a Ki value of 0.335 μM.  相似文献   

19.
(1) Background: Screening of medicinal herbs is one of the most powerful approaches to identifying novel therapeutic molecules against many human diseases. To avoid potential harmful effects during medicinal use, toxicity testing is necessary in the early stages of drug discovery. The objective of this study was to identify the cytotoxic mechanisms of jegosaponin A and B from Styrax japonica Siebold et al. Zuccarini; (2) Methods: We screened Japanese medicinal herb extracts using PC-3 prostate cancer cells and found that a methanol extract isolated from the unripe fruit of Styrax japonica Siebold et al. Zuccarini (SJSZ) had an inhibitory effect on cell viability. We further performed fractionation assays with PC-3 cells and identified the bioactive compounds using LC/MS and NMR analysis. We clarified the toxic mechanisms of these compounds using PC-3 cells and zebrafish embryos; (3) Results: We identified two active molecules, jegosaponin A and jegosaponin B, in the inhibitory fractions of the methanol extract. These jegosaponins are toxic to zebrafish embryos during the early developmental stage. Jegosaponin A and B showed strong haemolytic activity in sheep defibrinated blood (EC50 = 2.1 μM, and 20.2 μM, respectively) and increased the cell membrane permeability in PC-3 cells and zebrafish embryos, which were identified using a membrane non-permeable DRAQ7, a fluorescent nucleus staining dye; (4) We identified the cytotoxic compounds jegosaponin A and B from SJSZ, which we showed to exhibit cell membrane disruptive properties using cell- and zebrafish-based testing.  相似文献   

20.
Despite available treatments, breast cancer is the leading cause of cancer-related death. Knowing that the tyrosine phosphatase SHP2 is a regulator in tumorigenesis, developing inhibitors of SHP2 in breast cells is crucial. Our study investigated the effects of new compounds, purchased from NSC, on the phosphatase activity of SHP2 and the modulation of breast cancer cell lines’ proliferation and viability. A combined ligand-based and structure-based virtual screening protocol was validated, then performed, against SHP2 active site. Top ranked compounds were tested via SHP2 enzymatic assay, followed by measuring IC50 values. Subsequently, hits were tested for their anti-breast cancer viability and proliferative activity. Our experiments identified three compounds 13030, 24198, and 57774 as SHP2 inhibitors, with IC50 values in micromolar levels and considerable selectivity over the analogous enzyme SHP1. Long MD simulations of 500 ns showed a very promising binding mode in the SHP2 catalytic pocket. Furthermore, these compounds significantly reduced MCF-7 breast cancer cells’ proliferation and viability. Interestingly, two of our hits can have acridine or phenoxazine cyclic system known to intercalate in ds DNA. Therefore, our novel approach led to the discovery of SHP2 inhibitors, which could act as a starting point in the future for clinically useful anticancer agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号