首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
孙雄康  李强 《化工学报》2022,73(3):1127-1135
采用固相烧结技术制备了均匀多孔层、复合16芯和复合32芯三种多孔结构,并且建立了池沸腾传热测试系统来研究不同芯数量、粒径与结构高度对多孔结构沸腾传热性能的影响。实验结果表明,在测试范围内复合层高1 mm的多孔复合32芯结构传热性能较强,临界热通量(CHF)最高为386 W/cm2,传热系数最高达到9.5 W/(cm2·K)。同时利用高速摄影观察气泡行为来研究强化沸腾传热机理。可视化数据表明,相比于光滑表面,在高热通量下多孔复合表面上气泡周期更短,脱离更快,气泡的离开带来了更多的液体补充,进而不断提升传热性能,获得更高的CHF值。  相似文献   

2.
张超  杨鹏  刘广林  赵伟  杨绪飞  张伟  宇波 《化工进展》2023,(8):4193-4203
与单相射流相比,阵列式微射流沸腾换热耦合了分布式射流与气液相变两种高效传热模式,在高热通量电子器件冷却领域具有重要的应用前景。本文创新性提出一种具有顶部浸入式阵列射流柱与底部微针肋阵列结构耦合的微射流沸腾换热系统,采用无水乙醇为工质,研究了入口过冷度、入口Re、热通量对射流沸腾换热影响特性;采用电刷镀制备了镍/石墨烯微纳复合结构,研究了该复合结构对微针肋阵列表面射流沸腾换热的影响规律,揭示了镍过渡层引入的附加热阻以及蘑菇状微纳复合结构对气泡脱离的抑制是换热削弱的主要原因。为克服上述弊端,采用激光对镍/石墨烯微纳复合结构表面进行了刻蚀,发现激光刻蚀消除了镍/石墨烯微纳复合结构导致的附加热阻及其气泡脱离抑制效应,其最大传热系数达到30787.0W/(m2·K),较镍/石墨烯微纳复合结构表面和针肋阵列光滑表面传热系数分别提高了140.7%和119.8%。本文的研究结果表明,微纳复合结构对沸腾换热的影响取决于制备工艺及其结构形貌,激光刻蚀较电刷镀形成的微纳复合结构在微射流沸腾换热强化方面更具优势,为表面微纳结构强化沸腾换热系统设计、制备和运行提供科学参考。  相似文献   

3.
沸腾传热是一种高效换热方式,在多种领域具有广泛应用前景。其中多孔金属表面由于其比表面积大、导热性能好以及汽化核心密度高等突出优点,受到广泛关注;而多孔表面、耦合表面、亲疏水改性能极大地提高临界热流密度,调控沸腾传热,变无序为可控,正迅速成为强化沸腾相变传热领域的新热点。本文追踪了多孔表面和表面改性强化沸腾传热的最新进展,重点介绍多孔尺度、形状、核化点布局及整体/局部亲疏水性强化沸腾性能及机理;简要分析了以Zuber临界热流密度公式为基础的Kandlikar系列公式;整理近年来不断完善和改进的沸腾传热机理模型,认为微液层蒸发和瞬态热传导是微纳多孔表面强化沸腾的主导机制;进一步指出微纳多孔表面耦合、局部亲疏水性处理是强化沸腾传热新的发展方向。  相似文献   

4.
郭兆阳  徐鹏  王元华  徐宏  曾宪泰  杨胜 《化工学报》2012,63(12):3798-3804
实验研究了热通量为0.1~160 kW·m-2时,去离子水在光管及烧结型多孔表面管管外的池沸腾传热特性,分析了换热管布置方式(垂直与水平)、管径大小(20、25和32 mm)与多孔层颗粒尺寸(30~105 μm)对池沸腾传热特性的影响规律。结果表明:去离子水在多孔管表面的起始沸腾过热度小于光管,比光管低3 K左右;多孔表面管可明显强化核态沸腾传热,其沸腾传热系数可达光管的3~4.5倍;大热通量下,换热管水平布置时的传热效果较垂直布置佳,且布置方式对多孔管换热效果的影响比对光管的影响小;随管径增大,光管与多孔表面管的沸腾传热系数降低;大颗粒尺寸多孔层的强化效果优于小颗粒尺寸多孔层。  相似文献   

5.
杨鹏  胡士松  刘广飞  张伟  孙东亮  宇波 《化工进展》2021,40(5):2526-2535
微通道换热器较大的比表面积使其具有较高的热质传输效率,在化工、能源等领域具有广泛的应用前景。针对微通道流动沸腾换热强化,本文设计了一种具有Ni/Ag微纳复合结构表面的顶部连通型微通道换热器,该顶部连通型微通道由11条并联微通道组成,微通道的截面为400μm×400μm的正方形,并联通道上方连通空间的高度也为400μm;采用电刷镀技术在顶部连通型微通道表面制备了Ni/Ag微纳米复合结构,以无水乙醇为工质,开展了普通并联微通道(regular microchannel, RMC)、顶部连通型微通道(top-connected microchannel,TCMC)以及具有微纳复合结构表面的顶部连通型微通道(TCMC-Ni/Ag)内流动沸腾换热对比实验研究。结果表明:TCMC-Ni/Ag表面的最大局部换热系数达179.84kW/(m2·K),较RMC的最大局部换热系数提高了4.1倍。可视化研究发现,对于TCMC-Ni/Ag,强亲水性的微纳复合结构表面同时提高了核化密度和核化频率,中低热流条件下形成气相汇聚于顶部连通区域,微通道表面仍然产生大量气泡的流型结构,在高热流密度条件下,强亲水性微纳复合结构的毛细吸液作用使得通道内产生了薄液膜对流蒸发换热模式,是其换热性能大幅提高的主要机理。  相似文献   

6.
黄瑞涛  春江  张峥  李启凡  温荣福  马学虎 《化工学报》2021,72(11):5510-5519
HFE-7100/水作为非共沸不互溶工质可以拓宽核状沸腾传热的有效温区,目前关于其在微纳复合表面的沸腾传热特性和气泡运动机理尚不明晰。利用气泡模板电沉积法在铜基表面上制备了具有微纳孔洞的复合结构,测试了HFE-7100/水的沸腾传热特性,并通过可视化探究了沸腾工质转换(BRT)过程中两相工质在表面的润湿状态和气泡运动现象。结果表明,微纳复合表面上HFE-7100/水的BRT过程中,气泡先后经历小气泡聚并、气膜膨胀、轻工质接触壁面核化三个过程。在BRT过程中,HFE-7100与水对热壁面的润湿性存在竞争关系,随着过热度增加,薄的HFE-7100液层难以维持稳定的重工质沸腾,上层水工质可以穿过HFE-7100层对热壁面实现完全润湿,完成BRT过程。与单一工质相比,常压下HFE-7100/水混合工质体系可以在343~423 K下实现高效的核状沸腾传热。该研究揭示了HFE-7100/水在微纳复合表面的沸腾传热特性,为沸腾强化表面设计提供了思路。  相似文献   

7.
曾龙  郑贵森  邓大祥  孙健  刘永恒 《化工进展》2022,41(9):4625-4634
微通道散热器作为一种高效散热器件,广泛应用于微电子、光电、汽车、航天国防、能源等领域。针对传统光滑微通道传热面积小、换热性能偏低、沸腾迟滞等问题,本文提出一种多孔壁面微通道结构,并采用激光直写方法实现微通道多孔壁面的高效、稳定生成。该多孔壁面微通道显著增大了换热面积、促进流体的扰动、提供大量稳定沸腾核心,从而强化单相与两相沸腾传热。通过搭建微通道换热性能测试系统,测试对比了多孔壁面微通道与光滑微通道的单相对流、两相沸腾传热性能。发现多孔壁面微通道的Nu数相对于光滑微通道提升了21%~31%。在两相沸腾换热过程中,其粗糙多孔结构促进了沸腾气泡成核,其核态沸腾起始温度相比于光滑微通道降低了35%。同时粗糙多孔结构可以保证沸腾过程中的液体持续供给,从而大幅提升了沸腾换热能力,避免了干涸现象的提前发生,其两相沸腾换热系数相对于未处理的光滑微通道最大提升了83%。此外,还开展了不同流量下多孔壁面微通道的沸腾传热性能测试,发现在质量流率为G=500kg/(m2·s)下的沸腾换热系数相对于G=200kg/(m2·s)情况下最大提升了30%。  相似文献   

8.
池沸腾换热表面的结构对其沸腾换热性能具有重要影响。为了进一步强化在较低表面过热度时池沸腾换热的性能,提出了新型梯形微槽道池沸腾换热表面,采用可视化实验方法研究了饱和温度下去离子水在该表面的池沸腾换热性能。结果表明:与光滑平面相比,梯形微槽道表面可以降低起始沸腾表面过热度;在相同表面过热度时,随着下底长度的增大、下底角角度的减小,梯形微槽道表面的热通量增加,换热能力增强。下底长度为1.2 mm、下底角度为45°的梯形微槽道表面具有最低的起始沸腾表面过热度(1.4 K);在表面过热度为8.3 K时,其热通量能达到1.2×106 W·m-2,为相同表面过热度时光滑表面的24.0倍。较大的下底长度和较小的下底角角度有利于增强梯形微槽道表面的池沸腾换热性能。  相似文献   

9.
表面改性是提高沸腾换热性能的重要手段。本文以自主开发的微结构表面为基础,简述了近三年来常重力条件下的微/纳结构表面强化池沸腾换热、临界热流密度预测模型及经验关联、微重力条件下(重力水平为10-2~10-3 g 0g 0=9.8m/s2)加热面尺寸对沸腾换热的影响和气泡动力学等方面的研究进展。对柱状微结构参数和排布方式进行优化后的多尺度复合微结构表面相比柱状微结构表面和光滑表面,其壁面温度可分别降低8K和30K以上,而临界热流密度(CHF)则分别提高了28%和119%以上。体积分数为0.02%的乙醇/银纳米流体相对于单纯的乙醇工质,相同条件下换热壁面温度可降低8~15K,而机械作用对CHF约有25%的提高。通过对柱状微结构的几何参数以及临界发生时的供液机理研究,建立了考虑柱状微结构参数的CHF关联式、微/纳结构表面考虑液体毛细芯吸作用的CHF预测模型以及考虑液体铺展速度的CHF预测关联式。根据微重力下加热面尺寸对沸腾的影响的研究,提出了基于恒定热流密度的换热预测关联式。考虑微重力条件下主气泡和小气泡的表面张力,对传统的气泡脱离直径预测的力平衡模型进行了改进,进一步提高了微重力下气泡的脱离半径的预测精度。此外,对近年来以FC-72为工质的其他强化池沸腾换热微结构表面的研究成果进行了总结,并与自主研发的微结构表面换热性能进行了对比与分析,为今后的研究方向和应用指出了方向。  相似文献   

10.
采用氧-乙炔火焰喷涂金属粉末工艺在不锈钢基板表面制备不锈钢基多孔层,用于强化高功率电子器件沸腾水冷。研究了喷涂火焰功率对多孔层结构的影响,制备的多孔层孔隙率最高可达48.7%。建立了池沸腾实验系统,对比测试了光滑表面和多孔层修饰表面(多孔表面)在去离子水中的饱和池沸腾传热性能;并采用高速摄像机对沸腾现象进行可视化研究。结果表明:多孔表面起始沸腾过热度较光滑表面可降低1.4—2.7 K;多孔表面可显著强化沸腾传热,且强化效果随多孔层孔隙率的增大而增强,多孔表面最高传热系数为50.1 k W/(m~2·K),最高临界热流密度(CHF)为1 596.1 kW/m~2,分别比光滑表面提高了60%和30%;多孔表面汽化核心数量多,且脱离气泡不易汇聚,故表现出较好的沸腾传热特性。研究结果为该类型多孔表面用于电子冷却强化提供了一定依据。  相似文献   

11.
范晓光  杨磊  张敏 《化工进展》2021,40(1):57-66
池沸腾是重要的传热模式之一,广泛应用于诸多工业领域。饱和压力的变化会影响传热工质的热物性,进而引起表面核化及气泡动力学参数的改变,因此饱和压力对池沸腾传热性能具有显著影响。本文在不同饱和压力(0.07MPa、0.10MPa、0.15MPa及0.20MPa)工况下对HFE-7100工质在纳米级粗糙度光滑铜基表面的池沸腾传热及可视化实验进行了研究,针对饱和压力对池沸腾传热的影响机制进行了深入探讨,同时采用相关池沸腾传热及临界热通量预测模型对传热性能曲线进行了对比分析。光滑铜基表面的平均粗糙度为19nm,HFE-7100工质在其上的静态接触角为9.83°。可视化图像展现了沸腾孤立气泡生成、充分发展合并及核化沸腾向膜状沸腾转换的过渡状态。实验数据表明,饱和压力的提升可强化池沸腾传热能力及提升临界热通量。相较于0.07MPa低压池沸腾,0.10MPa、0.15MPa及0.20MPa条件下池沸腾的最大传热系数分别提升29%、59%及75%,传热系数的平均提升率分别为24%、50%和63%,而临界热通量分别增加27%、48%及64%。相对而言,Forster和Zuber(1955)建立的池沸腾传热预测模型及Guan等(2011)建立的临界热通量预测模型较为准确地预测了本研究操控条件下的池沸腾实验数据。  相似文献   

12.
吴凯  刘飞  王伟文 《当代化工》2023,(4):963-967
沸腾传热主要受汽泡行为的影响,而汽泡行为与加热面的表面性质密切相关。使用纳米粒子对加热面进行表面涂层改性,可以有效调节气泡行为,进而增强池沸腾传热性能。介绍了纳米涂层表面的理论模型及强化性能最新研究进展,根据涂层表面纳米粒子种类的不同,将其分为金属纳米粒子涂层表面、碳基纳米粒子涂层表面和复合表面。讨论了纳米涂层表面强化沸腾传热的理论分析以及存在的不足,为纳米涂层表面进一步强化池沸腾传热的研究提供参考。  相似文献   

13.
郑晓欢  纪献兵  王野  徐进良 《化工进展》2016,35(12):3793-3798
为研究超亲/疏水性表面对沸腾传热的影响,用H2O2氧化的方式制备了超亲水表面,用氨水加高分子修饰的方式制备了超疏水表面。在常压下以蒸馏水为工质,采用高速摄影仪对其进行了池沸腾传热实验。结果表明,超疏水表面亲气疏水,在沸腾起始点易于产生气泡,且气泡不易脱离,此时壁面过热度ΔTs仅为2.4K,但随热流密度的增大,气泡易于聚合,所产生的大气泡阻碍了传热的进行,传热开始恶化,临界热流密度(CHF)较低;而H2O2氧化的表面由于刀片状微纳结构的存在,增加了表面的粗糙度,不仅增大了相变传热表面积、增加了核化点数量,而且具有超亲水特性,气泡脱离频率较大,大大强化了沸腾传热,最大换热系数约是光表面的1.7倍,且相应地提高了CHF,可达131.0W/cm2,表现出较好的传热特性。  相似文献   

14.
以多个不同管径的TiO2纳米管阵列表面以及不同Ti表面作为换热壁面,以去离子超纯水作为工质,进行重复池沸腾实验。在实验前后进行了样品润湿性能测试实验,测量了超纯水在样品表面上的静态接触角;在实验中,使用高速摄像机观测气泡动力学过程。实验结果表明,管径不是对池沸腾换热性能产生重要影响的唯一主要因素,管径尺度的凹坑难以形成有效的汽化核心,不利于强化换热。实验中没有观察到大量微小气泡,证实没有大量有效的汽化核心。由于TiO2纳米管阵列表面的润湿性能较好,其能明显提高池沸腾的临界热通量(CHF),最大增幅度可达116%。但部分样品在经历CHF后会出现脱落现象,脱落后,CHF明显降低。  相似文献   

15.
潘丰  王超杰  母立众  贺缨 《化工学报》2021,72(5):2514-2527
微液层蒸发是沸腾过程中重要的换热机理。本文旨在通过单个气泡池沸腾实验中测得的气泡动态参数探究孤立气泡生长过程中加热表面的换热机理。首先通过沸腾池和加热表面的严格设计实现了单个气泡沸腾。进一步通过对孤立气泡生长时序图像的处理,得到了气泡在一个生长周期内气泡直径、纵横比以及气泡根部基圆半径的变化。对比发现,气泡生长速率与气泡根部基圆半径随时间的变化呈现显著正相关,而与大液层区域的变化相关程度较低,这表明微液层蒸发直接影响气泡体积变化,在孤立气泡沸腾过程中起主导作用。在此基础上进一步建立了加热表面换热过程的数值模型,基于实验中测得的气泡动态参数对气泡底层的微液层厚度进行了预测;通过多次迭代计算并匹配气泡生长速率和加热棒的温度发现,当表面过热度为4.82 K时,气泡底层微液层厚度约为3.43 μm,与相关文献中的微液层厚度测量值基本一致,进一步证实了微液层蒸发在孤立气泡沸腾换热过程中的重要性。本研究揭示了孤立气泡池沸腾过程中近壁面处的换热机制,为进一步的孤立气泡沸腾传热过程数值模拟奠定了理论基础。  相似文献   

16.
杨振  姚元鹏  李昀  吴慧英 《化工学报》2022,73(3):1093-1101
以Tween20、Span20及两者复配物为表面活性剂,实验研究了其对水过冷池沸腾传热特性影响。基于实验结果与表面张力、接触角、临界胶束浓度等基础物性分析发现,单一表面活性剂对沸腾传热的影响由其添加种类、浓度及热通量共同决定。一方面,不同于饱和沸腾情形,过冷状态下Tween20能够有效降低沸腾起始点温度与壁面过热度,但其沸腾强化效果在高热通量下减弱;另一方面,Span20只在低浓度下表现出强化效果,其浓度增大将引起壁面过热度大幅攀升。此外,尽管Tween20与Span20都具有强化沸腾传热的潜力,但两者复配表面活性剂在实验研究浓度范围内均恶化了沸腾传热过程。研究结果可为传热强化复合工质过冷池沸腾传热特性分析提供基础依据,并为其配制提供指导。  相似文献   

17.
用激光烧蚀方法在抛光后的铜上制备出四种无需涂覆修饰即可获得超疏水/亲水性的规则微阵列结构表面。基于流动可视化与温度数据结果,分析了表面浸润性和过冷度对流动沸腾传热性能的影响,与经典汽化核心密度关联式进行了对比。结果表明:疏水表面可削弱单相对流传热,大幅强化沸腾传热,最大传热系数提高了75.5%,沸腾起始点提前3.5 K,且汽化核心数目较裸铜表面提高了5倍以上,但有较低的临界热通量。超亲水表面可增强单相对流传热、小幅度提升流动沸腾传热。对比亲水表面与疏水表面的气泡生长过程,发现疏水表面尾端气泡容易汇聚,生长周期较长;而亲水表面没有发生明显的气泡汇聚行为,气泡生长周期较短。  相似文献   

18.
王乐  翁建华 《化工进展》2020,39(11):4330-4341
微柱群结构能够增大有效传热面积并增强流动扰动,在航空航天、核电站、空调制冷等领域有广阔的应用前景。但是宏观流动传热机理在微尺度下不一定适用,在微尺度领域流动换热受更多因素影响。本文针对结构、纳米粒子以及不同重力水平对微柱群流动换热影响机理进行了综述,总结了国内外在这方面的研究成果。流线型微柱群结构具有较好的传热性能。文中指出微米或毫米级的粒子在液体中易沉降,堵塞微柱群通道,而纳米流体在微柱群通道压降小、纳米粒子不易沉淀且单位体积内的热导率更高,但纳米流体的物性只能在短时间内保持稳定不变。无论是常重力还是微重力下沸腾换热,微柱群结构都存在毛细吸引力,可及时向受热面供给液体并且提供稳定的气泡成核位点,有助于提高传热系数。本文提出临界热通量和气泡离开直径的变化规律是微重力下微柱群结构沸腾换热的研究重点。  相似文献   

19.
刁彦华  赵耀华  王秋良 《化学工程》2006,34(8):13-16,27
基于单组分工质池沸腾动态微液层预测模型,提出了预测双组分混合工质沸腾换热系数的理论模型。该模型认为沸腾换热的机理主要是由于在气泡的周期生长过程中所形成微液层的蒸发。模型中考虑了气泡生长过程中液体传质对传热的影响,给出了气泡生长过程中传热面上气液固接触的动态构造。利用本模型所得预测结果与实验结果能够较好地符合。  相似文献   

20.
核电站熔融物堆内滞留技术是一项关键的严重事故应对策略,该策略已被核电站广泛采用。为增强核电站压力容器下封头外表面的沸腾换热能力,实验研究了常压下朝下沟槽结构表面的池沸腾换热,测量了倾角5°、30°、45°、60°和90°下热通量随壁面过热度的变化,获得了相应倾角下的临界热通量(CHF)。与光表面相比,朝下沟槽结构表面的CHF可提高65%~90%。实验观察发现,在高热通量下朝下沟槽结构表面气泡运动形态存在蒸汽膜和波浪蒸汽层两种结构。分析表明,沸腾换热显著增强、临界热通量大幅提高的原因是沟槽结构大幅增加了换热面积同时还明显改善了表面的润湿性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号