首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies indicate that Acanthamoeba spp. may play a significant role in kidney dysfunction. The aim of the study was to examine the levels of kidney injury molecule 1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and monocyte chemotactic protein 1 (MCP-1), as well as an activity of matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9, respectively) in the kidneys of immunocompetent and immunosuppressed mice infected with Acanthamoeba spp. The levels of KIM-1, NGAL, and MCP-1 were analyzed by enzyme-linked immunosorbent assay (ELISA), and the activity of MMPs was determined by gelatin zymography. The elevated KIM-1 level was found in the kidneys of immunocompetent mice at the beginning of Acanthamoeba spp. infection. In the immunosuppressed mice, the KIM-1 level was statistically different. The statistically decreased NGAL level was found in the kidneys of immunocompetent mice compared to the uninfected mice. In the immunocompromised mice, we found statistically significant differences in MCP-1 levels between the uninfected and infected groups. There was an increase in the expression of both MMP-2 and MMP-9 in the kidneys of immunocompetent and immunosuppressed mice infected with Acanthamoeba spp. compared to the uninfected mice. The results indicate that KIM-1, NGAL, MCP-1, MMP-2, MMP-9, and MMP-9/NGAL might be promising biomarkers of renal acanthamoebiasis.  相似文献   

2.
Sphingosine kinase 1 (SPHK1) and the sphingosine-1-phosphate (S1P) signaling pathway have been shown to play a role in pulmonary arterial hypertension (PAH). S1P is an important stimulus for pulmonary artery smooth muscle cell (PASMC) proliferation and pulmonary vascular remodeling. We aimed to examine the specific roles of SPHK1 in PASMCs during pulmonary hypertension (PH) progression. We generated smooth muscle cell-specific, Sphk1-deficient (Sphk1f/f TaglnCre+) mice and isolated Sphk1-deficient PASMCs from SPHK1 knockout mice. We demonstrated that Sphk1f/f TaglnCre+ mice are protected from hypoxia or hypoxia/Sugen-mediated PH, and pulmonary vascular remodeling and that Sphk1-deficient PASMCs are less proliferative compared with ones isolated from wild-type (WT) siblings. S1P or hypoxia activated yes-associated protein 1 (YAP1) signaling by enhancing its translocation to the nucleus, which was dependent on SPHK1 enzymatic activity. Further, verteporfin, a pharmacologic YAP1 inhibitor, attenuated the S1P-mediated proliferation of hPASMCs, hypoxia-mediated PH, and pulmonary vascular remodeling in mice and hypoxia/Sugen-mediated severe PH in rats. Smooth muscle cell-specific SPHK1 plays an essential role in PH via YAP1 signaling, and YAP1 inhibition may have therapeutic potential in treating PH.  相似文献   

3.
The infiltration and activation of macrophages as well as lymphocytes within atherosclerotic lesion contribute to the pathogenesis of plaque rupture. We have demonstrated that invariant natural killer T (iNKT) cells, a unique subset of T lymphocytes that recognize glycolipid antigens, play a crucial role in atherogenesis. However, it remained unclear whether iNKT cells are also involved in plaque instability. Apolipoprotein E (apoE) knockout mice were fed a standard diet (SD) or a high-fat diet (HFD) for 8 weeks. Moreover, the SD- and the HFD-fed mice were divided into two groups according to the intraperitoneal injection of α-galactosylceramide (αGC) that specifically activates iNKT cells or phosphate-buffered saline alone (PBS). ApoE/Jα18 double knockout mice, which lack iNKT cells, were also fed an SD or HFD. Plaque instability was assessed at the brachiocephalic artery by the histological analysis. In the HFD group, αGC significantly enhanced iNKT cell infiltration and exacerbated atherosclerotic plaque instability, whereas the depletion of iNKT cells attenuated plaque instability compared to PBS-treated mice. Real-time PCR analyses in the aortic tissues showed that αGC administration significantly increased expressional levels of inflammatory genes such as IFN-γ and MMP-2, while the depletion of iNKT cells attenuated these expression levels compared to those in the PBS-treated mice. Our findings suggested that iNKT cells are involved in the exacerbation of plaque instability via the activation of inflammatory cells and upregulation of MMP-2 in the vascular tissues.  相似文献   

4.
Endothelin-1 (ET-1) is one of the most potent vasoconstrictors known to date. While its plasma or serum concentrations are elevated in some forms of experimental and human hypertension, this is not a consistent finding in all forms of hypertension. Matrix metalloproteinases -2 and -9 (MMP-2 and MMP-9), which degrade collagen type IV of the vascular basement membrane, are responsible for vascular remodeling, inflammation, and atherosclerotic complications, including in type 2 diabetes (T2D). In our study, we compared concentrations of ET-1, MMP-2, and MMP-9 in pre-hypertensive (PHTN) and hypertensive (HTN) T2D patients with those of healthy normotensive controls (N). ET-1, MMP-2, and MMP-9 were measured by ELISA. Concentrations of ET-1 in PHTN and N were very similar, while those in HTN were significantly higher. Concentrations of MMP-2 and MMP-9 in PHTN and HTN were also significantly higher compared to N. An interesting result in our study is that concentrations of MMP-2 and MMP-9 in HTN were lower compared to PHTN. In conclusion, we showed that increased production of ET-1 in patients with T2D can lead to long-lasting increases in blood pressure (BP) and clinical manifestation of hypertension. We also demonstrated that increased levels of MMP-2 and MMP-9 in pre-hypertensive and hypertensive patients with T2D mainly reflect the early vascular changes in extracellular matrix (ECM) turnover.  相似文献   

5.
The importance of low-density lipoprotein (LDL) in the etiology of atherosclerosis is well recognized. We have established a reproducible stenosis model in hypercholesterolemic hamsters, and the process of arterial stenosis by thrombus or neointima was studied and compared with that in normal hamsters. The level of plasma LDL was 4.6 times higher in hamsters fed a high-cholesterol diet than in hamsters fed normal food. Endothelial injury in right common carotid arteries was induced using a modified catheter. Arterial blood flow was monitored continuously using a Doppler flow probe. Arterial patency after the initiation of injury in high-cholesterol hamsters was significantly changed as compared with that of normal hamsters. Neointima was observed 2 wk after the vascular injury. The neointimal area of high-cholesterol hamsters was significantly larger than that of normal hamsters. To characterize the stenosis in hypercholesterolemic hamsters, we measured platelet aggregation, thrombin time, activated partial thromboplastin time, and proliferating smooth muscle cells (SMC) in vitro and in vivo. The half-maximal inhibitory concentration value for platelet aggregation induced by thrombin or collagen, the DNA synthesis stimulated by plateletderived growth factor (PDGF)-BB, and 5-bromo-2-deoxy-uridine labeling indices (proliferating index of SMC in vivo) in high-cholesterol hamsters were each significantly higher than the comparable value from normal hamsters. However, specific binding of PDGF-BB in SMC was not different between the two types of hamsters. Furthermore, we investigated the inhibitory effects of probucol or losartan on neointima formation using this model. Probucol, but not losartan, significantly reduced the neointimal area in hypercholesterolemic hamsters. These findings indicated that high levels of plasma LDL strongly contributed to the development of thrombus and neointima formation via both up-regulation of platelet aggregation and the enhancement of SMC proliferation. This stenosis model may be useful for the investigation of hypercholesterolemia-associated cardiovascular diseases.  相似文献   

6.
The aim was to examine the role of exogenous hydrogen sulfide (H2S) on cardiac remodeling in post-myocardial infarction (MI) rats. MI was induced in rats by ligation of coronary artery. After treatment with sodium hydrosulfide (NaHS, an exogenous H2S donor, 56 μM/kg·day) for 42 days, the effects of NaHS on left ventricular morphometric features, echocardiographic parameters, heme oxygenase-1 (HO-1), matrix metalloproteinases-9 (MMP-9), type I and type III collagen, vascular endothelial growth factor (VEGF), CD34, and α-smooth muscle actin (α-SMA) in the border zone of infarct area were analyzed to elucidate the protective mechanisms of exogenous H2S on cardiac function and fibrosis. Forty-two days post MI, NaHS-treatment resulted in a decrease in myocardial fibrotic area in association with decreased levels of type I, type III collagen and MMP-9 and improved cardiac function. Meanwhile, NaHS administration significantly increased cystathionine γ-lyase (CSE), HO-1, α-SMA, and VEGF expression. This effect was accompanied by an increase in vascular density in the border zone of infarcted myocardium. Our results provided the strong evidences that exogenous H2S prevented cardiac remodeling, at least in part, through inhibition of extracellular matrix accumulation and increase in vascular density.  相似文献   

7.
Chronic neuroinflammation has been considered to be involved in the progressive dopaminergic neurodegeneration in Parkinson’s disease (PD). However, the mechanisms remain unknown. Accumulating evidence indicated a key role of the blood–brain barrier (BBB) dysfunction in neurological disorders. This study is designed to elucidate whether chronic neuroinflammation damages dopaminergic neurons through BBB dysfunction by using a rotenone-induced mouse PD model. Results showed that rotenone dose-dependently induced nigral dopaminergic neurodegeneration, which was associated with increased Evans blue content and fibrinogen accumulation as well as reduced expressions of zonula occludens-1 (ZO-1), claudin-5 and occludin, three tight junction proteins for maintaining BBB permeability, in mice, indicating BBB disruption. Rotenone also induced nigral microglial activation. Depletion of microglia or inhibition of microglial activation by PLX3397 or minocycline, respectively, greatly attenuated BBB dysfunction in rotenone-lesioned mice. Mechanistic inquiry revealed that microglia-mediated activation of matrix metalloproteinases-2 and 9 (MMP-2/-9) contributed to rotenone-induced BBB disruption and dopaminergic neurodegeneration. Rotenone-induced activation of MMP-2/-9 was significantly attenuated by microglial depletion and inactivation. Furthermore, inhibition of MMP-2/-9 by a wide-range inhibitor, SB-3CT, abrogated elevation of BBB permeability and simultaneously increased tight junctions expression. Finally, we found that microglial depletion and inactivation as well as inhibition of MMP-2/-9 significantly ameliorated rotenone-elicited nigrostriatal dopaminergic neurodegeneration and motor dysfunction in mice. Altogether, our findings suggested that microglial MMP-2/-9 activation-mediated BBB dysfunction contributed to dopaminergic neurodegeneration in rotenone-induced mouse PD model, providing a novel view for the mechanisms of Parkinsonism.  相似文献   

8.
In the presence of established atherosclerosis, estrogens are potentially harmful. MMP-2 and MMP-9, their inhibitors (TIMP-2 and TIMP-1), RANK, RANKL, OPG, MCP-1, lysyl oxidase (LOX), PDGF-β, and ADAMTS-4 play critical roles in plaque instability/rupture. We aimed to investigate (i) the effect of estradiol on the expression of the abovementioned molecules in endothelial cells, (ii) which type(s) of estrogen receptors mediate these effects, and (iii) the role of p21 in the estrogen-mediated regulation of the aforementioned factors. Human aortic endothelial cells (HAECs) were cultured with estradiol in the presence or absence of TNF-α. The expression of the aforementioned molecules was assessed by qRT-PCR and ELISA. Zymography was also performed. The experiments were repeated in either ERα- or ERβ-transfected HAECs and after silencing p21. HAECs expressed only the GPR-30 estrogen receptor. Estradiol, at low concentrations, decreased MMP-2 activity by 15-fold, increased LOX expression by 2-fold via GPR-30, and reduced MCP-1 expression by 3.5-fold via ERβ. The overexpression of ERα increased MCP-1 mRNA expression by 2.5-fold. In a low-grade inflammation state, lower concentrations of estradiol induced the mRNA expression of MCP-1 (3.4-fold) and MMP-9 (7.5-fold) and increased the activity of MMP-2 (1.7-fold) via GPR-30. Moreover, p21 silencing resulted in equivocal effects on the expression of the abovementioned molecules. Estradiol induced different effects regarding atherogenic plaque instability through different ERs. The balance of the expression of the various ER subtypes may play an important role in the paradoxical characterization of estrogens as both beneficial and harmful.  相似文献   

9.
Pituitary apoplexy is a clinical syndrome with unknown pathogenesis. Therefore, identifying the underlying mechanisms is of high clinical relevance. Tumor necrosis factor alpha (TNF-α) is a critical cytokine mediating various hemorrhagic events, but little is known about its involvement in pituitary apoplexy. Here we show that TNF-α may be an important regulator of hemorrhagic transformation in pituitary adenomas. In this study, sixty surgical specimens of hemorrhagic and non-hemorrhagic human pituitary adenomas were examined. Hemorrhagic pituitary adenomas displayed higher protein and mRNA levels of TNF-α, vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) compared with those of non-hemorrhagic tumors. Exposure of MMQ pituitary adenoma cells to TNF-α induced VEGF and MMP-9 expression in vitro. Additionally, TNF-α administration caused hemorrhagic transformation and enhanced VEGF and MMP-9 expression in MMQ pituitary adenoma cell xenografts in mice. Blockers of VEGF or MMP-9, either alone or in combination, attenuated but not abrogated TNF-α mediated hemorrhagic transformation in xenografts. This study suggests that TNF-α may play a role in the development of intratumoral hemorrhage in pituitary adenomas via up-regulation of VEGF and MMP-9.  相似文献   

10.
Inactive cortisone is converted into active cortisol by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Excessive levels of active glucocorticoids could deteriorate skin barrier function; barrier impairment is also observed in aged skin. In this study, we aimed to determine whether permeability barrier impairment in the aged skin could be related to increased 11β-HSD1 expression. Aged humans (n = 10) showed increased cortisol in the stratum corneum (SC) and oral epithelium, compared to young subjects (n = 10). 11β-HSD1 expression (as assessed via immunohistochemical staining) was higher in the aged murine skin. Aged hairless mice (56-week-old, n = 5) manifested greater transepidermal water loss, lower SC hydration, and higher levels of serum inflammatory cytokines than the young mice (8-week-old, n = 5). Aged 11β-HSD1 knockout mice (n = 11), 11β-HSD1 inhibitor (INHI)-treated aged wild type (WT) mice (n = 5) and young WT mice (n = 10) exhibited reduced SC corticosterone level. Corneodesmosome density was low in WT aged mice (n = 5), but high in aged 11β-HSD1 knockout and aged INHI-treated WT mice. Aged mice exhibited lower SC lipid levels; this effect was reversed by INHI treatment. Therefore, upregulation of 11β-HSD1 in the aged skin increases the active-glucocorticoid levels; this suppresses SC lipid biosynthesis, leading to impaired epidermal permeability barrier.  相似文献   

11.
Excessive proliferation and migration of vascular smooth muscle cells (VSMCs) contribute to the development of atherosclerosis and restenosis. Glycolysis and glutaminolysis are increased in rapidly proliferating VSMCs to support their increased energy requirements and biomass production. Thus, it is essential to develop new pharmacological tools that regulate metabolic reprogramming in VSMCs for treatment of atherosclerosis. The effects of 6-diazo-5-oxo-L-norleucine (DON), a glutamine antagonist, have been broadly investigated in highly proliferative cells; however, it is unclear whether DON inhibits proliferation of VSMCs and neointima formation. Here, we investigated the effects of DON on neointima formation in vivo as well as proliferation and migration of VSMCs in vitro. DON simultaneously inhibited FBS- or PDGF-stimulated glycolysis and glutaminolysis as well as mammalian target of rapamycin complex I activity in growth factor-stimulated VSMCs, and thereby suppressed their proliferation and migration. Furthermore, a DON-derived prodrug, named JHU-083, significantly attenuated carotid artery ligation-induced neointima formation in mice. Our results suggest that treatment with a glutamine antagonist is a promising approach to prevent progression of atherosclerosis and restenosis.  相似文献   

12.
Recently, senescence marker protein-30 (SMP30) knockout (KO) mice have been reported to be susceptible to apoptosis, however, the role of SMP30 has not been characterized in the small intestine. The aim of the present study is to investigate the role of SMP30 in the process of spontaneous and γ-radiation-induced apoptosis in mouse small intestine. Eight-week-old male wild-type (WT) mice and SMP30 KO mice were examined after exposure to 0, 1, 3, 5, and 9 Gy of γ-radiation. Apoptosis in the crypts of the small intestine increased in the 0 to 5 Gy radiated SMP30 KO and WT mice. Radiation-induced apoptosis and the BAX/Bcl-2 ratio in the SMP30 KO mice were significantly increased in comparison to each identically treated group of WT mice (p < 0.05). The levels of spontaneous apoptosis in both WT and KO mice were similar (p > 0.05), indicating that increased apoptosis of crypt cells of SMP30 KO by irradiation can be associated with SMP30 depletion. These results suggested that SMP30 might be involved in overriding the apoptotic homeostatic mechanism in response to DNA damage.  相似文献   

13.
Mitogen-activated protein kinase phosphatase-1 (MKP-1) is upregulated in inflammation and reduces the activity of proinflammatory mitogen-activated protein kinases (MAP kinases) by dephosphorylation. MAP kinases are intracellular signaling pathways that mediate the cellular effects of proinflammatory cytokines. In the present study, we investigated the effects of the glucocorticoid dexamethasone on the expression of catabolic enzymes in chondrocytes and tested the hypothesis that these effects are mediated through MKP-1. Dexamethasone was found to significantly attenuate the expression of matrix metalloproteinase (MMP)-13 in human OA chondrocytes as well as in chondrocytes from MKP-1 WT mice, but not in chondrocytes from MKP-1 KO mice. Dexamethasone also increased the expression of MKP-1 in murine and human OA chondrocytes. Furthermore, p38 MAP kinase inhibitors significantly attenuated MMP-13 expression in human OA chondrocytes, while JNK MAP kinase inhibitors had no effect. The results indicate that the effect of dexamethasone on MMP-13 expression in chondrocytes was mediated by an MKP-1 and p38 MAP kinase-dependent manner. These findings, together with previous results, support the concept of MKP-1 as a protective factor in articular chondrocytes in inflammatory conditions and as a potential drug target to treat OA.  相似文献   

14.
Introduction: A recent study showed that early renal tubular injury is ameliorated in Nod-like receptor pyrin domain-containing protein 3 (NLRP3) KO mice with rhabdomyolysis-induced acute kidney injury (RIAKI). However, the precise mechanism has not been determined. Therefore, we investigated the role of NLRP3 in renal tubular cells in RIAKI. Methods: Glycerol-mediated RIAKI was induced in NLRP3 KO and wild-type (WT) mice. The mice were euthanized 24 h after glycerol injection, and both kidneys and plasma were collected. HKC-8 cells were treated with ferrous myoglobin to mimic a rhabdomyolytic environment. Results: Glycerol injection led to increase serum creatinine, aspartate aminotransferase (AST), and renal kidney injury molecule-1 (KIM-1) level; renal tubular necrosis; and apoptosis. Renal injury was attenuated in NLRP3 KO mice, while muscle damage and renal neutrophil recruitment did not differ between NLRP3 KO mice and WT mice. Following glycerin injection, increases in cleaved caspase-3, poly (ADP-ribose) polymerase (PARP), and a decrease in the glutathione peroxidase 4 (GPX-4) level were observed in the kidneys of mice with RIAKI, and these changes were alleviated in the kidneys of NLRP3 KO mice. NLRP3 was upregulated, and cell viability was suppressed in HKC-8 cells treated with ferrous myoglobin. Myoglobin-induced apoptosis and lipid peroxidation were significantly decreased in siNLRP3-treated HKC-8 cells compared to ferrous myoglobin-treated HKC-8 cells. Myoglobin reduced the mitochondrial membrane potential and increased mitochondrial fission and reactive oxygen species (ROS) and lipid peroxidation levels, which were restored to normal levels in NLRP3-depleted HKC-8 cells. Conclusions: NLRP3 depletion ameliorated renal tubular injury in a murine glycerol-induced acute kidney injury (AKI) model. A lack of NLRP3 improved tubular cell viability via attenuation of myoglobin-induced mitochondrial injury and lipid peroxidation, which might be the critical factor in protecting the kidney.  相似文献   

15.
Chronic kidney disease is a common problem in the elderly and is associated with increased mortality. We have reported on the role of nitric oxide, which is generated from endothelial nitric oxide synthase (eNOS), in the progression of aged kidneys. To elucidate the role of endothelial dysfunction and the lack of an eNOS-NO pathway in ageing kidneys, we conducted experiments using eNOS and ASC-deficient mice. C57B/6 J mice (wild type (WT)), eNOS knockout (eNOS KO), and ASC knockout (ASC KO) mice were used in the present study. Then, eNOS/ASC double-knockout (eNOS/ASC DKO) mice were generated by crossing eNOS KO and ASC KO mice. These mice were sacrificed at 17−19 months old. The Masson positive area and the KIM-1 positive area tended to increase in eNOS KO mice, compared with WT mice, but not eNOS/ASC DKO mice. The COX-positive area was significantly reduced in eNOS KO mice, compared with WT and eNOS/ASC DKO mice. To determine whether inflammasomes were activated in infiltrating macrophages, the double staining of IL-18 and F4/80 was performed. IL-18 and F4/80 were found to be co-localised in the tubulointerstitial areas. Inflammasomes play a pivotal role in inflammaging in ageing kidneys. Furthermore, inflammasome activation may accelerate cellular senescence via mitochondrial dysfunction. The importance of endothelial function as a regulatory mechanism suggests that protection of endothelial function may be a potential therapeutic target.  相似文献   

16.
Ischemic stroke is one of the leading causes of death and permanent disability in adults. Recently, we found that light alcohol consumption (LAC) suppresses post-ischemic inflammatory response, which plays an important role in ischemic brain damage. Our goal was to determine the role of peroxisome proliferator-activated receptor-gamma (PPARγ) in the anti-inflammatory effect of LAC against transient focal cerebral ischemia. In in vivo study, male C57BL/6J wild type (WT) and endothelial-specific conditional PPARγ knockout mice were gavage fed with 0.7 g/kg/day ethanol or volume-matched water daily for 8 weeks. From the 7th week, 3 mg/kg/day GW9662 (a selective PPARγ antagonist) was intraperitoneally given for two weeks. Cerebral ischemia/reperfusion (I/R) injury and expression of manganese superoxide dismutase (MnSOD) and adhesion molecules, neutrophil infiltration, and microglial activation in the cerebral cortex before and following a 90 min unilateral middle cerebral artery occlusion (MCAO)/24 h reperfusion were evaluated. In in vitro study, the impact of chronic alcohol exposure on expression of PPARγ and MnSOD in C57BL/6J mouse brain microvascular endothelial cells (MBMVECs) was measured. PPARγ and MnSOD were significantly upregulated in the cerebral cortex of ethanol-fed WT mice and low-concentration ethanol-exposed C57BL/6J MBMVECs. GW9662 significantly inhibited alcohol-induced upregulation of MnSOD. Eight-week ethanol feeding significantly reduced cerebral I/R injury and alleviated the post-ischemic inflammatory response (upregulation of intercellular adhesion molecule-1 (ICAM-1) and E-selectin, microglial activation, and neutrophil infiltration). Treatment with GW9662 and endothelial-specific conditional knockout of PPARγ did not alter cerebral I/R injury and the inflammatory response in the control mice but abolish the neuroprotective effect in ethanol-fed mice. In addition, GW9662 and endothelial-specific conditional knockout of PPARγ diminished the inhibitory effect of LAC on the post-ischemic expression of adhesion molecules and neutrophil infiltration. Our findings suggest that LAC may protect against cerebral I/R injury by suppressing the post-ischemic inflammation via activation of PPARγ.  相似文献   

17.
This study characterized the effects of a deficiency of the hypoxia-responsive gene, differentiated embryonic chondrocyte gene 1 (Dec1), in attenuating the biological function of orthodontic tooth movement (OTM) and examined the roles of ribosomal proteins in the hypoxic environment during OTM. HIF-1α transgenic mice and control mice were used for hypoxic regulation of periodontal ligament (PDL) fibroblasts. Dec1 knockout (Dec1KO) and wild-type (WT) littermate C57BL/6 mice were used as in vivo models of OTM. The unstimulated contralateral side served as a control. In vitro, human PDL fibroblasts were exposed to compression forces for 2, 4, 6, 24, and 48 h. HIF-1α transgenic mice had high expression levels of Dec1, HSP105, and ribosomal proteins compared to control mice. The WT OTM mice displayed increased Dec1 expression in the PDL fibroblasts. Micro-CT analysis showed slower OTM in Dec1KO mice compared to WT mice. Increased immunostaining of ribosomal proteins was observed in WT OTM mice compared to Dec1KO OTM mice. Under hypoxia, Dec1 knockdown caused a significant suppression of ribosomal protein expression in PDL fibroblasts. These results reveal that the hypoxic environment in OTM could have implications for the functions of Dec1 and ribosomal proteins to rejuvenate periodontal tissue homeostasis.  相似文献   

18.
19.
Glucose-dependent insulinotropic polypeptide (GIP) exerts extra-pancreatic effects via the GIP receptor (GIPR). Herein, we investigated the effects of GIP on force-induced bone remodeling by orthodontic tooth movement using a closed-coil spring in GIPR-lacking mice (GIPRKO) and wild-type mice (WT). Orthodontic tooth movements were performed by attaching a 10-gf nickel titanium closed-coil spring between the maxillary incisors and the left first molar. Two weeks after orthodontic tooth movement, the distance of tooth movement by coil load was significantly increased in GIPRKO by 2.0-fold compared with that in the WT. The alveolar bone in the inter-root septum from the root bifurcation to the apex of M1 decreased in both the GIPRKO and WT following orthodontic tooth movement, which was significantly lower in the GIPRKO than in the WT. The GIPRKO exhibited a significantly decreased number of trabeculae and increased trabecular separation by orthodontic tooth movement compared with the corresponding changes in the WT. Histological analyses revealed a decreased number of steady-state osteoblasts in the GIPRKO. The orthodontic tooth movement induced bone remodeling, which was demonstrated by an increase in osteoblasts and osteoclasts around the forced tooth in the WT. The GIPRKO exhibited no increase in the number of osteoblasts; however, the number of osteoclasts on the coil-loaded side was significantly increased in the GIPRKO compared with in the WT. In conclusion, our results demonstrate the impacts of GIP on the dynamics of bone remodeling. We revealed that GIP exhibits the formation of osteoblasts and the suppression of osteoclasts in force-induced bone remodeling.  相似文献   

20.
Connexin43 (Cx43), the main gap junction and hemichannel forming protein in the urinary bladder, participates in the regulation of bladder motor and sensory functions and has been reported as an important modulator of day–night variations in functional bladder capacity. However, because Cx43 is expressed throughout the bladder, the actual role played by the detrusor and the urothelial Cx43 is still unknown. For this purpose, we generated urothelium-specific Cx43 knockout (uCx43KO) mice using Cre-LoxP system. We evaluated the day–night micturition pattern and the urothelial Cx43 hemichannel function of the uCx43KO mice by measuring luminal ATP release after bladder distention. In wild-type (WT) mice, distention-induced ATP release was elevated, and functional bladder capacity was decreased in the animals’ active phase (nighttime) when Cx43 expression was also high compared to levels measured in the sleep phase (daytime). These day–night differences in urothelial ATP release and functional bladder capacity were attenuated in uCx43KO mice that, in the active phase, displayed lower ATP release and higher functional bladder capacity than WT mice. These findings indicate that urothelial Cx43 mediated ATP signaling and coordination of urothelial activity are essential for proper perception and regulation of responses to bladder distension in the animals’ awake, active phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号