共查询到20条相似文献,搜索用时 0 毫秒
1.
多视图子空间聚类方法因其可以揭示数据内在的低维结构而被广泛关注,但大多数现有的多视图子空间聚类算法直接将多个来自原始数据的充满噪声的相似度矩阵进行融合,并且通常是在得到一致的多视图表示之后再使用K均值算法聚类得到最终的结果,这种将表示的学习过程和后续的聚类过程分离的两阶段算法会导致无法得到最优的聚类结果.为了解决这些问题,提出一种单步划分融合多视图子空间聚类算法.该算法不是直接融合具有噪声和冗余信息的相似度矩阵,而是从相似度矩阵中提取出更具有判别性信息的划分级信息进行融合.提出一个新的框架,将表示学习、多视图信息融合以及最后的聚类过程整合在同一框架中.这三个过程彼此促进,好的聚类结果可以引导生成更好的多视图表示,从而得到更好的聚类效果.提出一种有效的轮替优化算法来解决由此得到的优化问题.最后,在四个真实的基准数据集上得到的实验结果可以证明提出方法的有效性以及先进性. 相似文献
3.
现有的多视图聚类算法大多假设多视图数据点之间为线性关系,且在学习过程中无法保留原始特征空间的局部性;而在欧氏空间中进行子空间融合又过于单调,无法将学习到的子空间表示对齐。针对以上问题,提出了基于格拉斯曼流形融合子空间的多视图聚类算法。首先,将核技巧和局部流形结构学习结合以得到不同视图的子空间表示;然后,在格拉斯曼流形上融合这些子空间表示以得到一致性亲和矩阵;最后,对一致性亲和矩阵执行谱聚类来得到最终的聚类结果,并利用交替方向乘子法(ADMM)来优化所提模型。与核多视图低秩稀疏子空间聚类(KMLRSSC)算法相比,所提算法的聚类精度在MSRCV1、Prokaryotic、Not-Hill数据集上分别提高了20.83个百分点、9.47个百分点和7.33个百分点。实验结果验证了基于格拉斯曼流形融合子空间的多视图聚类算法的有效性和良好性能。 相似文献
4.
多视图聚类需要将多个视图的数据信息进行融合表示,是一项重要且具有挑战的任务.至今仍存在2个难解的问题:1)如何将多视图信息有效融合,减少信息丢失;2)如何将图学习和谱聚类同时进行,避免2步策略带来次优化结果.由于数据本身存在噪声并且各视图数据差异较大,在数据空间进行融合可能会造成重要信息的损失;另外,考虑到不同视图的数据应具有相同的聚类结构.为此提出基于谱结构融合的多视图聚类模型,将各视图信息在谱嵌入阶段实施融合,一方面避免了噪声和各视图数据差异的影响,另一方面融合的部位和方式更自然,减少了融合阶段信息的丢失.另外,该模型利用子空间自表示进行图学习,有效地将图学习和谱聚类整合到统一框架中进行联合优化学习.在5个真实数据集上的实验表明了模型的有效性和优越性. 相似文献
5.
提出基于随机初始化、参数扰动和特征子集映射的多扰动的局部自适应软子空间聚类(LAC)融合算法(MLACE)。MLACE具有以下特点:(i)多扰动融合:从初始化、参数和特征子集等不同侧面,探测数据内部结构,使之相互融合,从而达到改善聚类正确性的目的;(ii)融合信息提升:根据LAC算法输出的子空间权重矩阵,定义数据属于每一类的概率,形成提升的融合信息;(iii)融合一致性函数改进:融合信息的形式由0/1二值信息转换成[0,1]实值信息,因此,一致性函数采用了性能较优的实数值融合算法Fast global K-means来进一步改善融合正确性。实验选取2个仿真数据库和5个UCI数据库测试MLACE的聚类正确性,实验结果表明,MLACE聚类正确性优于K-means、LAC、基于参数扰动LAC融合算法(P-MLACE)。 相似文献
6.
7.
随着收集和存储数据的能力不断提高,真实数据通常由不同的表现形式(视图)组成.因此多视图学习在机器学习与模式识别领域中扮演着重要的角色.近年来,多种多视图学习方法被提出并应用于不同的实际场景中.然而,在目标函数中大部分数据点存在平方残差,少数误差较大的离群点很容易令目标函数失效,因此如何处理冗余数据是多视图学习面临的重要... 相似文献
8.
现有多视图子空间聚类算法通常先进行张量表示学习, 进而将学习到的表示张量融合为统一的亲和度矩阵. 然而, 因其独立地学习表示张量和亲和度矩阵, 忽略了两者之间的高度相关性. 为了解决此问题, 提出一种基于一步张量学习的多视图子空间聚类方法, 联合学习表示张量和亲和度矩阵. 具体地, 该方法对表示张量施加低秩张量约束, 以挖掘视图的高阶相关性. 利用自适应最近邻法对亲和度矩阵进行灵活重建. 使用交替方向乘子法对模型进行优化求解, 通过对真实多视图数据的实验表明, 较于最新的多视图聚类方法, 提出的算法具有更好的聚类准确性. 相似文献
9.
10.
多视图子空间聚类是一种从子空间中学习所有视图共享的统一表示, 挖掘数据潜在聚类结构的方法. 作为一种处理高维数据的聚类方法, 子空间聚类是多视图聚类领域的研究热点之一. 多视图低秩稀疏子空间聚类是一种结合了低秩表示和稀疏约束的子空间聚类方法. 该算法在构造亲和矩阵过程中, 利用低秩稀疏约束同时捕捉了数据的全局结构和局部结构, 优化了子空间聚类的性能. 三支决策是一种基于粗糙集模型的决策思想, 常被应用于聚类算法来反映聚类过程中对象与类簇之间的不确定性关系. 本文基于三支决策的思想, 设计了一种投票制度作为决策依据, 将其与多视图稀疏子空间聚类组成一个统一框架, 从而形成一种新的算法. 在多个人工数据集和真实数据集上的实验表明, 该算法可提高多视图聚类的准确性. 相似文献
11.
针对多视图数据分析易受原始数据集噪声干扰,以及需要额外的步骤计算聚类结果的问题,提出一种基于一致图学习的鲁棒多视图子空间聚类(RMCGL)算法。首先,在各个视图下学习数据在子空间中的潜在鲁棒表示,并基于该表示得到各视图的相似度矩阵。随后,基于得到的多个相似度矩阵学习一个统一的相似度图。最后,通过对相似度图对应的拉普拉斯矩阵添加秩约束,确保得到的相似度图具有最优的聚类结构,并可直接得到最终的聚类结果。该过程在一个统一的优化框架中完成,能同时学习潜在鲁棒表示、相似度矩阵和一致图。RMCGL算法的聚类精度(ACC)在BBC、100leaves和MSRC数据集上比基于图的多视图聚类(GMC)算法分别提升了3.36个百分点、5.82个百分点和5.71个百分点。实验结果表明,该算法具有良好的聚类效果。 相似文献
12.
近年来,多核聚类(MKC)在融合多源信息以提高聚类性能方面取得了显著进展。但是,以n表示样本数,O(n2)内存消耗和On3计算消耗限制了这些方法的实用性。重新设计了基于子空间分割的MKC公式,从而将其内存和计算复杂度分别降低到O(n)和O(n2)。在该算法(基于压缩子空间对齐的多核聚类算法CSA-MKC)中,通过对部分数据采样来重建整个数据集。具体而言,在该算法中,在信息融合过程中同时学习了共识采样矩阵,从而使生成的锚点集更适合于跨不同视图的数据重建。因此,改进了重构矩阵的判别性,并增强了聚类性能。此外,该算法易于并行化,通过GPU加速,在6个数据集上进行了测试,在时间上,该算法是数据规模的平方复杂度,在性能上,优于目前的先进算法。 相似文献
13.
《计算机科学与探索》2023,(5):1147-1156
多视图聚类是一个日益受到关注的研究热点。现有的大多数多视图聚类方法通常先对数据进行图学习,再对融合得到的统一图进行聚类得到最终结果,这种图学习和图聚类的两步策略可能导致聚类结果具有随机性。此外,多视图数据本身存在不可避免的噪声并且各视图数据差异较大,在原始高维数据空间进行无效融合可能造成重要信息的损失,不同多视图数据也可能存在选择参数敏感的问题。为了解决上述问题,提出了一种动态融合的多视图投影聚类算法,将自适应降维图学习、无参数的自权重图融合和谱聚类整合在同一框架中,三个过程相互促进,联合优化投影矩阵、相似性矩阵、共识矩阵以及聚类标签。对动态融合过程中得到的共识矩阵的拉普拉斯矩阵施加秩约束,直接获得聚类结果。而且引入的启发式超参数会随着每次优化迭代自动调整。为了求解联合优化问题,设计了一种有效的交替迭代方法。在人工数据集和真实数据集上得到的实验结果表明该算法的优越性。 相似文献
14.
多视图聚类能充分利用不同视图间数据的一致性和差异性,引起越来越多的关注。传统多视图聚类方法假设每个视图的数据都是完整的,然而在实际应用中,收集到的多视图数据常存在部分视图缺失的样本。为了对缺失多视图数据进行聚类分析,提出自适应图融合的缺失多视图聚类算法(IMC_AGF)。算法以两两视图间共有样本为瞄点构建样本-样本的相似度矩阵,学习其一致性知识,再利用两两视图间的互补性,用自适应图融合算法整合所有的相似度图,获取缺失多视图数据完整的相似度矩阵,然后进行谱聚类得到分类结果。实验结果表明,提出的算法优于与之比较的经典缺失多视图聚类方法。 相似文献
15.
一种改进的多视图聚类集成算法 总被引:1,自引:0,他引:1
近年来,针对大数据的数据挖掘技术和机器学习算法研究变得日趋重要。在聚类领域,随着多视图数据的大量出现,多视图聚类已经成为了一类重要的聚类方法。然而,大多数现有的多视图聚类算法受算法参数设置、数据样本等影响,具有聚类结果不稳定、参数需要反复调节等缺点。基于多视图K-means算法和聚类集成技术,提出了一种改进的多视图聚类集成算法,其提高了聚类的准确性、鲁棒性和稳定性。其次,由于单机环境下的多视图聚类算法难以对海量的数据进行处理,结合分布式处理技术,实现了一种分布式的多视图并行聚类算法。实验证明,并行算法在处理大数据时的时间效率有很大提升,适合于大数据环境下的多视图聚类分析。 相似文献
16.
基于图谱理论的多视图聚类是该领域的代表性方法之一.然而,现有模型尚存在3个问题.1)这类方法大多没有考虑不同视图之间的聚类性能差异,强制要求所有视图共享一个公共相似图;2)部分模型将相似图构建和聚类分步进行,导致所构建的相似图对于聚类任务并非最优;3)虽已有若干模型采用核学习处理数据间的非线性关系,但大多基于全局模型计算数据在核空间中的自表达关系,不利于充分挖掘局部非线性信息,且易带来沉重的计算负荷.为了应对以上问题,提出一种基于邻域多核学习的后融合多视图聚类算法,在类划分空间而不是数据相似图的层次进行信息融合,采用邻域多核学习方案在充分保留局部非线性关系的同时减轻计算负荷,并提出一种交替优化方案将相似图构建、多核组合、类指示矩阵生成等子任务在统一的框架下进行协同优化.多个数据集上的实验表明:该算法具有良好的多视图聚类效果. 相似文献
17.
随着数据获取方式的多样化发展,针对多视图领域的算法研究变得越来越重要,但大多数方法仅通过自表示属性或局部结构获取样本间的相似性关系,在此过程中忽略了整体样本的聚类结构和原始空间的噪声的影响,使得聚类结果存在较大误差。为解决此问题,提出了一种基于聚类结构和局部相似性的多视图隐空间聚类方法(multi-view latent subspace clustering with cluster structure and local similarity, MLC2L),通过隐表示融合不同视图上的共享信息并抑制噪声的存在。此外,通过探索隐空间内样本间的局部相似性关系和整体的聚类结构促进样本达到同类聚合、异类远离的目的;最后引入一个交替方向迭代优化算法来快速求解目标函数。实验结果显示,在六个真实数据集的实验中,MLC2L在MSRC-v1、UCI以及100Leaves上的五个评价指标均为最优,在3Sources、WebKB和Prokaryotic等数据集上的五个指标有四个最优,大量的实验分析也证明了融合局部结构和整体聚类结构的MLC2L在多视图聚类任务上的有效性。 相似文献
18.
传统子空间浅层聚类模型对于多视图和非线性数据的聚类性能不佳。为此,提出一种基于深度自编码器的多视图子空间聚类网络模型,通过在深度自编码器中引入子空间聚类中的“自我表示”特性以及加权稀疏表示,提升了多视图子空间聚类算法的学习能力。推导的深度自编码多视图子空间聚类算法能够聚类具有复杂结构的数据点。通过多视图数据集验证了提出算法的有效性。结果表明,该方法能够有效地挖掘数据固有的多样性聚类结构,并利用多个视图之间互补信息,在性能上与现有方法相比有较大的提升。 相似文献
19.
现有的多视图聚类算法往往缺乏对各视图可靠度的评估和对视图进行加权的能力,而一些具备视图加权的多视图聚类算法则通常依赖于特定目标函数的迭代优化,其目标函数的适用性及部分敏感超参数调优的合理性均对实际应用有显著影响。针对这些问题,提出一种基于视图互信息加权的多视图集成聚类(MEC-VMIW)算法,主要过程可分为两个阶段,即视图互加权阶段与多视图集成聚类阶段。在视图互信息加权阶段,对数据集进行多次随机降采样,以降低评估加权过程的问题规模,进而构建多视图降采样聚类集合,根据不同视图的聚类结果之间的多轮互评得到视图可靠度评估,并据此对视图进行加权;在多视图集成聚类阶段,对各个视图数据构建基聚类集合,并将多个基聚类集合加权建模至二部图结构,利用高效二部图分割算法得到最终多视图聚类结果。在若干个多视图数据集上的实验结果验证了所提出的多视图集成聚类算法的鲁棒聚类性能。 相似文献
20.
随着数据量的增大,多视图聚类中出现带有缺失视图数据的情况愈发常见,此问题被称为不完备多视图聚类,而引入深度模型进行聚类通常可以获得比浅层模型更为出色的表现。本文提出一种新颖的深度不完备多视图聚类模型,称为改进的自步深度不完备多视图聚类。在该模型中,充分考虑多视图数据之间的互补性,利用基于多视图特性的最近邻填充方案将缺失视图补全。使用多个自编码器分别获取多个视图数据的低维潜在特征,同时引入图嵌入策略保持潜在特征之间的几何结构。运用一致性原则将来自不同的视图潜在特征融合以获得一致潜在特征,在此基础上运用自步学习的方法来增强聚类效果。实验结果表明,对比现有的不完备多视图聚类模型,本文模型可以更加灵活且高效地应对各种不完备多视图聚类情况,提升了不完备多视图聚类的鲁棒性与表现效果。 相似文献