共查询到20条相似文献,搜索用时 15 毫秒
1.
针对遥感图像由于具有背景复杂和目标方向多变、尺度变化剧烈的特性导致目标检测精度较低的问题,文中提出了一种基于瓶颈注意力的遥感图像目标检测算法R-YOLOv5。该算法通过主干特征提取网络、瓶颈注意力、旋转框和损失函数的改进来加强网络对关键目标的特征提取能力,并在训练阶段采用了Mosaic和Mixup的TTA数据增强策略来弱化遥感图像复杂的背景信息对检测的影响。实验结果表明,R-YOLOv5的mAP达到了94.7%,与原始YOLOv5相比,提高了14.1%,可以有效提高遥感图像目标检测精度。 相似文献
2.
针对遥感图像中背景复杂、小目标分布密集以及易受环境因素影响导致检测性能不佳的问题,提出一种改进的YOLOv5s目标检测算法。首先,通过设计一种混淆鉴别注意力机制(Confusion-Distinguishable Attention,CDA)来避免目标与背景之间的混淆,提高对目标信息的关注度,能够有效提升目标检测的准确性和健壮性。其次,在原结构的颈部添加小目标检测层,解决小目标分布紧密、漏检的现象,从而提高算法的多尺度目标检测性能。最后,在DOTA数据集中进行实验和验证。实验结果表明,所提算法能够明显提高遥感图像目标检测的平均准确率。 相似文献
3.
针对遥感图像在复杂背景下因特征提取和表达能力不足而存在漏检和检测效果不佳的问题,提出一种优化特征提取网络的YOLOv4算法模型。该改进模型引入了一种新的Dense-PANet结构以获取更高的分辨率特征,并通过在特征提取网络中嵌入注意力机制以适应遥感图像因视野范围大而导致复杂背景下小目标漏检和检测效果不佳的问题。为了证明本文所提方法的有效性,针对DIOR遥感数据源进行了对比实验,结果表明,本文算法平均准确率(mean average precision,mAP)为86.55%,相比原算法提高了2.52%,较YOLOv3、RetinaNet提高了6.58%、14.09%,验证了所改进算法的有效性。 相似文献
4.
针对遥感目标检测中检测速度慢,网络计算量大的问题,提出一种基于DN-YOLOv5的遥感目标快速检测方法。目标检测锚框采用K-means++重新聚类,以减少网络的计算量;修改算法主干网络部分的CSP1_X模块以减少参数量,并在主干网络进行双密集连接,加强卷积操作对特征的利用率;将算法模型中的CBL模块的Leak ReLU激活函数替换成H-swish激活函数,以提高网络检测速度。将快速目标检测方法 DN-YOLOv5在公开的DIOR遥感数据集上进行验证。结果表明,改进后的快速检测方法,模型大小为48 MB,降低了约47.2%,推理时延为33.8 ms,推理加速了约39%。 相似文献
5.
真实遥感图像中,目标呈现任意方向分布的特点,原始YOLOv5网络存在难以准确表达目标的位置和范围、以及检测速度一般的问题。针对上述问题,提出一种遥感影像旋转目标检测模型YOLOv5-Left-Rotation,首先利用Transformer自注意力机制,让模型更加注意感兴趣的目标,并且在图像预处理过程中采用Mosaic数据增强,对后处理过程使用改进后的非极大值抑制算法Non-Maximum Suppression。其次,引入角度损失函数,增加网络的输出维度,得到旋转矩形的预测框。最后,在网络模型的浅层阶段,增加滑动窗口分支,来提高大尺寸遥感稀疏目标的检测效率。实验数据集为自制飞机数据集CASIA-plane78和公开的舰船数据集HRSC2016,结果表明,改进旋转目标检测算法相比于原始YOLOv5网络的平均精度提升了3.175%,在吉林一号某星推扫出的大尺寸多光谱影像中推理速度提升了13.6%,能够尽可能地减少冗余背景信息,更加准确检测出光学遥感图像中排列密集、分布无规律的感兴趣目标的区域。 相似文献
6.
针对传统火灾系统预警不及时、容易误报等问题,文章提出了一种基于改进YOLOv5的火灾检测算法。为了增强网络对火焰的方向和位置信息的敏感度,在模型中引入CA(Coordinate Attention)注意力机制;为了提高回归精度和收敛速度,使用损失函数SIOU替换CIOU。改进的YOLOv5算法的精确率和平均精度达到了74.2%和69.4%,相较于标准算法的精确率和平均精度提高了8.8%和2.8%,优化定位框和误检情况。实验结果表明,改进的YOLOv5算法模型提高了火灾检测的准确性和实时性。 相似文献
7.
无人装备侦察过程中,自然地物形成的前景遮挡严重干扰目标检测算法提取侦察图像特征,导致算法对装甲车辆目标图像识别准确率大幅降低,甚至无法识别,影响军事人员对侦察回传的图像进行分析、研判。对此,本文提出了一种基于改进掩码自编码器(masked autoencoders, MAE)和YOLOv5的被遮挡装甲目标两阶段识别方法,以改进MAE作为“修复器”,修复装甲目标的被遮挡部分,再利用YOLOv5作为“检测器”获取修复后的目标类别和位置。该方法为大面积遮挡目标识别提出了一种“先修后检”的思路,其他行之有效的修复模型、检测模型同样可以尝试利用这一方法解决此类问题。仿真实验的定量对比和定性分析证明了本文提出的两阶段检测方法具有可行性;另外,在不同遮挡比例下,该方法的装甲目标检测效果也通过实验进行了展示和分析。面对大面积前景遮挡的装甲目标非实时检测问题,两阶段检测方法有效解决了难以识别或识别准确率低的问题,降低了军事人员确认算法检测结果的难度。 相似文献
8.
针对低光照环境下现有的目标检测算法普遍存在检测精度较低的问题,提出一种改进YOLOv5的双通道低光照图像目标检测算法(YOLOv5_DC)。首先,通过伽马变换和叠加高斯噪声的方法合成低光照图像,扩充数据集,提高模型的泛化能力;其次,提出特征增强模块,引入通道注意力机制,融合增强图像和原始图像的低级特征,抑制噪声特征的影响,改善网络的特征提取能力;最后,在颈部网络中加入特征定位模块,增加特征图在目标区域的响应值,使网络更关注目标区域,提高网络的检测能力。实验结果表明:所提YOLOv5_DC算法实现了更高的检测精度,在低光照图像目标检测数据集ExDark*上的平均精度均值(mAP)@0.5达71.85%,较原始的YOLOv5算法,提高了1.28个百分点。 相似文献
9.
针对目前遥感图像目标检测算法中存在的误检、漏检和检测精度低等问题,提出了一种改进YOLOv8的遥感图像检测算法。在主干网络中引入注意力机制EMA到C2f模块,以提高模型对多尺度目标的特征提取能力;在颈部网络中提出Slim-PAN结构,以减少模型计算量;使用WIOU损失函数代替CIOU损失函数,以提升模型的检测精度。通过在DIOR和RSOD遥感数据集上的实验结果表明,改进后的算法与原YOLOv8算法相比,mAP分别提升了1.5%和2.3%,计算量降低了0.3 GFLOPs,改进算法在不增加计算量的同时能提高检测精度,证明了改进算法的有效性和先进性。 相似文献
10.
针对海面目标检测模型难以应用在存储能力和计算能力较小的移动端的问题,提出一种基于改进YOLOv5的海面目标检测算法。采用轻量级提取网络ShuffleNetv2 Block作为YOLOv5网络的骨干部分,减少模型计算量和参数量;使用加权双向特征金字塔网络模块替换原特征融合网络模块,提高网络对不同尺度的特征提取能力;引入坐标注意力机制,提高模型检测精度。在海面目标数据集上进行实验,结果表明:与YOLOv5模型相比,改进模型的精确率、召回率、平均精度分别提高了1.2%、1.4%、0.9%,计算量和参数量分别降低了55.8%,54.9%。改进后的YOLOv5模型不仅提高了检测精度和模型性能,还压缩了模型的计算量和参数量,有利于部署在移动设备端。 相似文献
11.
随着城市人口的不断增加,不同的车辆使得交通状况越来越复杂。对此番现象进行研究之后,提出了一种改进的YOLOv5深度神经网络模型来实现交通中的车辆识别与检测,将有效帮助交通管理部门分析车辆和行人的运行状况。在分析YOLOv5算法的核心后,并针对交通目标尺度变化大的特点,充分利用了YOLOv5算法检测轻量化、速度快、实时性强的性质,并在此基础上,用FPN架构改进网络结构以便适应目标尺度的剧烈变化,用改进的K-means算法选出更加适合的初始候选框,不仅提高了运行速度,而且满足了实时性和准确性的要求,最终获得了较为成功的目标检测效果及其方案。 相似文献
12.
13.
针对煤矿井下环境多利用红外相机感知周边环境温度成像,但形成的图像存在纹理信息少、噪声多、图像模糊等问题,该文提出一种可用于煤矿井下实时检测的多尺度卷积神经网络(Ucm-YOLOv5)。该网络是在YOLOv5的基础上进行改进,首先使用PP-LCNet作为主干网络,用于加强CPU端的推理速度;其次取消Focus模块,使用shuffle_block模块替代C3模块,在去除冗余操作的同时减少了计算量;最后优化Anchor同时引入H-swish作为激活函数。实验结果表明,Ucm-YOLOv5比YOLOv5的模型参数量减少了41%,模型缩小了86%,该算法在煤矿井下具有更高的检测精度,同时在CPU端的检测速度达到实时检测标准,满足煤矿井下目标检测的工作要求。 相似文献
14.
针对目前算法对遥感图像中背景复杂、目标小而密集的复杂场景下的目标检测精度低的问题,提出了一种基于YOLOv3的改进算法,在YOLOv3的基础上,结合了密集连接网络,利用密集连接块来提取深层特征,增强特征传播,同时引入Distance-IoU(DIoU) loss作为坐标预测的损失函数,使边界框的定位更加准确,此外针对目... 相似文献
15.
文章针对小目标检测存在的可利用特征少、定位精度要求高、数据集小目标占比少、样本不均衡和小目标对象聚集等问题,提出将coordinateattention注意力嵌入YOLOv5模型。Coordinateattention注意力机制通过获取位置感知和方向感知的信息,能使YOLOv5模型更准确地识别和定位感兴趣的目标。YOLOv5改进模型采用木虱和VisDrone2019数据集开展实验验证,实验结果表明嵌入coordinate attention能有效提高YOLOv5的算法性能。 相似文献
16.
17.
使用搭载YOLOv5算法的无人机对物体进行目标检测时,由于其权重文件占有较大内存而要求无人机有较高的硬件配置,这在很大程度上约束了无人机进行目标检测的发展。为了解决这一问题,提出了一种改进的YOLOv5算法。使用深度可分离卷积代替普通卷积层,以使YOLOv5s轻量化。由于无人机从空中俯瞰物体,拍摄的图片具有较大的视野,因此将Dropblock与注意力机制添加至YOLOv5s主卷积层的底层来增加YOLOv5s的泛化能力与识别能力,进而提高YOLOv5s的小目标检测能力。使用所提方法对车辆数据集进行训练,获得了83%的训练准确率,并通过对比试验证明了所提方法比原始YOLOv5s具有更强的小目标检测能力。 相似文献
18.
针对目前主流的目标检测算法存在模型参数过大、不能很好地移植到移动设备端之中应用于辅助驾驶这一问题,本文提出了一种改进YOLOv5s的目标检测算法。首先,将YOLOv5s算法的主干网络CSPDarknet替换为轻量化网络模型MobileNet-V3,解决了网络模型较大、参数较多的问题,减少了网络的深度并提升了数据推断速度;其次,对特征提取网络采用加权双向特征金字塔结构Bi-FPN加强特征提取,融合多尺度特征进而扩大感受野;最后,对损失函数进行优化,使用CIoU为边界框回归损失函数,改善模型原始GIoU收敛速度较慢问题,使预测框更加符合于真实框,同时降低网络训练难度。实验结果表明,改进后算法在KITTI数据集上的mAP相较于YOLOv5s、SSD、YOLOv3、YOLOv4_tiny分别提升了4.4、15.7、12.4、19.6,模型大小相较于YOLOv5s与轻量级网络YOLOv4_tiny分别减少了32.4 MB和21 MB,同时检测速度分别提升了17.6%与43%。本文改进后的算法满足模型小、精确度高的要求,为辅助驾驶中道路目标检测提升检测速度与精度提供了一种解决方案。 相似文献
19.
20.
磁瓦的表面缺陷检测是生产环节的重要部分。针对传统的磁瓦表面目标缺陷检测存在精度低下、速度缓慢、小目标检测难度大等问题,首先采用YOLOv5s作为基础的网络,用改进后的CombinedE ffi cientNetV2网络来代替原YOLOv5中的CSPDarknet网络,让网络更加轻量化的同时检测速度有所提高。其次,将Ciou损失函数替换成性能更好的Focal-Eiou损失函数,提高对磁瓦表面的缺陷提取校正能力。最后,在网络中结合改进后的双Shu ffl eAttention注意力机制,并将激活函数替换成GeLU,让网络能关注到重要位置。通过多次训练网络,与FastRCNN、YOLOv3、SSD、原YOLOv5算法进行对比,P和mAP有不同程度的提升。结果表明,相较于原YOLOv5,改进后的算法mAP提高了3.9%,P提高了4%,FPS达到了41.3帧/s,能满足磁瓦生产线中的缺陷检测需求。 相似文献