首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
皮肤组织中富含金属矿物离子.由于组织的复杂性,金属矿物离子分别以游离态和结合态两种方式存在于皮肤中,并参与到屏障稳态维持、伤口愈合、氧化还原平衡等多种生物过程中.鉴于其多靶点、多通路的独特作用效果,金属矿物离子被广泛应用于皮肤护理中,可以带来皮肤修护、舒缓、抗皱、紧致、美白等诸多作用效果.文章综述了钙、镁、钾、锌、铜、锶等金属矿物离子对皮肤的生物学作用及其在化妆品中的应用.分别介绍了皮肤中的常见金属矿物离子及其浓度与分布、常见离子的皮肤学作用效果及其作用机理、化妆品原料中所涉及到的金属矿物离子成分、以及目前金属矿物离子成分在护肤产品应用中的局限与挑战,为未来的配方功效设计和功能活性物质的复配提供思路.  相似文献   

2.
    
The skin is a barrier between the body and the environment that protects the integrity of the body and houses a vast microbiota. By interacting with the host immune system, the microbiota improves wound healing in mammals. However, in fish, the evidence of the role of microbiota and the type of species on wound healing is scarce. We aimed to examine the wound healing rate in various fish species and evaluate the effect of antibiotics on the wound healing process. The wound healing rate was much faster in two of the seven fish species selected based on habitat and skin types. We also demonstrated that the composition of the microbiome plays a role in the wound healing rate. After antibiotic treatment, the wound healing rate improved in one species. Through 16S rRNA sequencing, we identified microbiome correlates of varying responses on wound healing after antibiotic treatment. These findings indicate that not only the species difference but also the microbiota play a significant role in wound healing in fish.  相似文献   

3.
    
Skin injury is quite common, and the wound healing is a complex process involving many types of cells, the extracellular matrix, and soluble mediators. Cell differentiation, migration, and proliferation are essential in restoring the integrity of the injured tissue. Despite the advances in science and technology, we have yet to find the ideal dressing that can support the healing of cutaneous wounds effectively, particularly for difficult-to-heal chronic wounds such as diabetic foot ulcers, bed sores, and venous ulcers. Hence, there is a need to identify and incorporate new ideas and methods to design a more effective dressing that not only can expedite wound healing but also can reduce scarring. Calcium has been identified to influence the wound healing process. This review explores the functions and roles of calcium in skin regeneration and reconstruction during would healing. Furthermore, this review also investigates the possibility of incorporating calcium into scaffolds and examines how it modulates cutaneous wound healing. In summary, the preliminary findings are promising. However, some challenges remain to be addressed before calcium can be used for cutaneous wound healing in clinical settings.  相似文献   

4.
    
The healing of skin wounds involves the activation and recruitment of various immune cell types, many of which are believed to contribute significantly to different aspects of the repair process. Roles for immune cells have been described in practically all stages of wound healing, including hemostasis, inflammation, proliferation and scar formation/remodeling. Over the last decade, tools to deplete immune cell populations in animal models have become more advanced, leading to a surge in the number of studies examining the function of specific immune cell types in skin repair. In this review, we will summarize what is known about distinct immune cell types in cutaneous wound healing, with an emphasis on data from animal studies in which specific cell types have been targeted.  相似文献   

5.
    
This study is preliminary to an experiment to be performed onboard the International Space Station (ISS) and on Earth to investigate how low gravity influences the healing of sutured human skin and vein wounds. Its objective was to ascertain whether these tissue explants could be maintained to be viable ex vivo for long periods of time, mimicking the experimental conditions onboard the ISS. We developed an automated tissue culture chamber, reproducing and monitoring the physiological tensile forces over time, and a culture medium enriched with serelaxin (60 ng/mL) and (Zn(PipNONO)Cl) (28 ng/mL), known to extend viability of explanted organs for transplantation. The results show that the human skin and vein specimens remained viable for more than 4 weeks, with no substantial signs of damage in their tissues and cells. As a further clue about cell viability, some typical events associated with wound repair were observed in the tissue areas close to the wound, namely remodeling of collagen fibers in the papillary dermis and of elastic fibers in the vein wall, proliferation of keratinocyte stem cells, and expression of the endothelial functional markers eNOS and FGF-2. These findings validate the suitability of this new ex vivo organ culture system for wound healing studies, not only for the scheduled space experiment but also for applications on Earth, such as drug discovery purposes.  相似文献   

6.
    
Gintonin, a novel compound of ginseng, is a ligand of the lysophosphatidic acid (LPA) receptor. The in vitro and in vivo skin wound healing effects of gintonin remain unknown. Therefore, the objective of this study was to investigate the effects of gintonin on wound healing-linked responses, especially migration and proliferation, in skin keratinocytes HaCaT. In this study, 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide assay, Boyden chamber migration assay, scratch wound healing assay, and Western blot assay were performed. A tail wound mouse model was used for the in vivo test. Gintonin increased proliferation, migration, and scratch closure in HaCaT cells. It also increased the release of vascular endothelial growth factor (VEGF) in HaCaT cells. However, these increases, induced by gintonin, were markedly blocked by treatment with Ki16425, an LPA inhibitor, PD98059, an ERK inhibitor, 1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetrakis (acetoxymethyl ester), a calcium chelator, and U73122, a PLC inhibitor. The VEGF receptor inhibitor axitinib also attenuated gintonin-enhanced HaCaT cell proliferation. Gintonin increased the phosphorylation of AKT and ERK1/2 in HaCaT cells. In addition, gintonin improved tail wound healing in mice. These results indicate that gintonin may promote wound healing through LPA receptor activation and/or VEGF release-mediated downstream signaling pathways. Thus, gintonin could be a beneficial substance to facilitate skin wound healing.  相似文献   

7.
    
Resveratrol is a well-known polyphenol that harbors various health benefits. Besides its well-known anti-oxidative potential, resveratrol exerts anti-inflammatory, pro-angiogenic, and cell-protective effects. It seems to be a promising adjuvant for various medical indications, such as cancer, vascular, and neurodegenerative diseases. Additionally, resveratrol was shown to display beneficial effects on the human skin. The polyphenol is discussed to be a feasible treatment approach to accelerate wound healing and prevent the development of chronic wounds without the drawback of systemic side effects. Despite resveratrol’s increasing popularity, its molecular mechanisms of action are still poorly understood. To take full advantage of resveratrol’s therapeutic potential, a profound knowledge of its interactions with its targets is needed. Therefore, this review highlights the resveratrol-induced molecular pathways with particular focus on the most relevant variables in wound healing, namely inflammation, oxidative stress, autophagy, collagen proliferation and angiogenesis.  相似文献   

8.
    
In this article, a hybrid system of hydrogel/frog egg-like microspheres (H-FMS) formed by the combination of coaxial electrostatic spraying and freeze-drying was introduced for enhancing wound healing efficiency through the sustained release of Rana chensinensis skin peptides (RCSPs). The porous PVA/gelatin hydrogel were obtained and frog egg-like microspheres (FMS) of sodium alginate (SA), shaping uniform and smooth, were embedded into hydrogel. Based on PVA/gelatin hydrogel, the FMS addition increased the water absorption of hydrogel to 1,105%. RCSPs were more effectively encapsulated into FMS than solid microspheres (MS). Not only does the H-FMS act as good “depots” for sustained release of RCSPs over 9 days, without exhibiting obvious burst release, but also show good biocompatibility in vitro. In vivo studies on wound healing as well as the histology of fibroblasts, re-epithelialization, inflammation, and hair follicles indicated that the structure of H-FMS released RCSPs continuously and promoted wound healing in rats significantly.  相似文献   

9.
Wound healing plays an important role in protecting the human body from external infection. Cell migration and proliferation of keratinocytes and dermal fibroblasts are essential for proper wound healing. Recently, several studies have demonstrated that secondary compounds produced in plants could affect skin cells migration and proliferation. In this study, we identified a novel compound DK223 ([1E,2E-1,2-bis(6-methoxy-2H-chromen-3-yl)methylene]hydrazine) that concomitantly induced human keratinocyte migration and dermal fibroblast proliferation. We evaluated the regulation of epithelial and mesenchymal protein markers, such as E-cadherin and Vimentin, in human keratinocytes, as well as extracellular matrix (ECM) secretion and metalloproteinase families in dermal fibroblasts. DK223 upregulated keratinocyte migration and significantly increased the epithelial marker E-cadherin in a time-dependent manner. We also found that reactive oxygen species (ROS) increased significantly in keratinocytes after 2 h of DK223 exposure, returning to normal levels after 24 h, which indicated that DK223 had an early shock effect on ROS production. DK223 also stimulated fibroblast proliferation, and induced significant secretion of ECM proteins, such as collagen I, III, and fibronectin. In dermal fibroblasts, DK223 treatment induced TGF-β1, which is involved in a signaling pathway that mediates proliferation. In conclusion, DK223 simultaneously induced both keratinocyte migration via ROS production and fibroblast proliferation via TGF-β1 induction.  相似文献   

10.
    
Skin is innervated by a multitude of sensory nerves that are important to the function of this barrier tissue in homeostasis and injury. The role of innervation and neuromediators has been previously reviewed so here we focus on the role of the transient receptor potential cation channel, subfamily V member 1 (TRPV1) in wound healing, with the intent of targeting it in treatment of non-healing wounds. TRPV1 structure and function as well as the outcomes of TRPV1-targeted therapies utilized in several diseases and tissues are summarized. In skin, keratinocytes, sebocytes, nociceptors, and several immune cells express TRPV1, making it an attractive focus area for treating wounds. Many intrinsic and extrinsic factors confound the function and targeting of TRPV1 and may lead to adverse or off-target effects. Therefore, a better understanding of what is known about the role of TRPV1 in skin and wound healing will inform future therapies to treat impaired and chronic wounds to improve healing.  相似文献   

11.
Programmed cell death 4 (PDCD4) is one multi-functional tumor suppressor inhibiting neoplastic transformation and tumor invasion. The role of PDCD4 in tumorigenesis has attracted more attention and has been systematically elucidated in cutaneous tumors. However, the normal biological function of PDCD4 in skin is still unclear. In this study, for the first time, we find that tumor suppressor PDCD4 is uniquely induced in a cell density-dependent manner in keratinocytes. To determine the potential role of PDCD4 in keratinocyte cell biology, we show that knockdown of PDCD4 by siRNAs can promote cell proliferation in lower cell density and partially impair contact inhibition in confluent HaCaT cells, indicating that PDCD4 serves as an important regulator of keratinocytes proliferation and contact inhibition in vitro. Further, knockdown of PDCD4 can induce upregulation of cyclin D1, one key regulator of the cell cycle. Furthermore, the expression patterns of PDCD4 in normal skin, different hair cycles and the process of wound healing are described in detail in vivo, which suggest a steady-state regulatory role of PDCD4 in epidermal homeostasis and wound healing. These findings provide a novel molecular mechanism for keratinocytes’ biology and indicate that PDCD4 plays a role in epidermal homeostasis.  相似文献   

12.
    
Skin exposure to high-dose irradiation, as commonly practiced in radiotherapy, affects the different skin layers, causing dry and wet desquamation, hyperkeratosis fibrosis, hard to heal wounds and alopecia and damaged hair follicles. Fetal tissue mesenchymal stromal cells (f-hPSC) were isolated from excised human fetal placental tissue, based on their direct migration from the tissue samples to the tissue dish. The current study follows earlier reports on for the mitigation of acute radiation syndrome following whole body high-dose exposure with remotely injected f-hPSC. Both the head only and a back skin flap of mice were irradiated with 16 &18 Gy, respectively, by 6MeV clinical linear accelerator electron beam. In both locations, the irradiated skin areas developed early and late radiation induced skin damages, including cutaneous fibrosis, lesions, scaring and severe hair follicle loss and reduced hair pigmentation. Injection of 2 × 106 f-hPSC, 3 and 8 weeks following 16 Gy head irradiation, and 1 and 4 weeks following the 18 Gy back skin only irradiation, resulted in significantly faster healing of radiation induced damages, with reduction of wet desquamation as measured by surface moisture level and minor recovery of the skin viscoelasticity. Detailed histological morphometry showed a clear alleviation of radiation induced hyperkeratosis in f-hPSC treated mice, with significant regain of hair follicles density. Following 16 Gy head irradiation, the hair follicles density in the scalp skin was reduced significantly by almost a half relative to the controls. A nearly full recovery of hair density was found in the f-hPSC treated mice. In the 18 Gy irradiated back skin, the hair follicles density dropped in a late stage by ~70% relative to naïve controls. In irradiated f-hPSC treated mice, it was reduced by only ~30% and was significantly higher than the non-treated group. Our results suggest that local injections of xenogeneic f-hPSC could serve as a simple, safe and highly effective non-autologous pro-regenerative treatment for high-dose radiation induced skin insults. We expect that such treatment could also be applied for other irradiated organs.  相似文献   

13.
    
Mesenchymal stem cells (MSCs) are multipotent stem cells derived from adult stem cells. Primary MSCs can be obtained from diverse sources, including bone marrow, adipose tissue, and umbilical cord blood. Recently, MSCs have been recognized as therapeutic agents for skin regeneration and rejuvenation. The skin can be damaged by wounds, caused by cutting or breaking of the tissue, and burns. Moreover, skin aging is a process that occurs naturally but can be worsened by environmental pollution, exposure to ultraviolet radiation, alcohol consumption, tobacco use, and undernourishment. MSCs have healing capacities that can be applied in damaged and aged skin. In skin regeneration, MSCs increase cell proliferation and neovascularization, and decrease inflammation in skin injury lesions. In skin rejuvenation, MSCs lead to production of collagen and elastic fibers, inhibition of metalloproteinase activation, and promote protection from ultraviolet radiation-induced senescence. In this review, we focus on how MSCs and MSC-derived molecules improve diseased and aged skin. Additionally, we emphasize that induced pluripotent stem cell (iPSC)-derived MSCs are potentially advanced MSCs, which are suitable for cell therapy.  相似文献   

14.
    
The concept behind photodynamic therapy (PDT) is being successfully applied in different biomedical contexts such as cancer diseases, inactivation of microorganisms and, more recently, to improve wound healing and tissue regeneration. The effectiveness of PDT in skin treatments is associated with the role of reactive oxygen species (ROS) produced by a photosensitizer (PS), which acts as a “double agent”. The release of ROS must be high enough to prevent microbial growth and, simultaneously, to accelerate the immune system response by recruiting important regenerative agents to the wound site. The growing interest in this subject is reflected by the increasing number of studies concerning the optimization of relevant experimental parameters for wound healing via PDT, namely, light features, the structure and concentration of the PS, and the wound type and location. Considering the importance of developing PSs with suitable features for this emergent topic concerning skin wound healing, in this review, a special focus on the achievements attained for each PS class, namely, of the non-porphyrinoid type, is given.  相似文献   

15.
    
After skin injury, wound healing sets into motion a dynamic process to repair and replace devitalized tissues. The healing process can be divided into four overlapping phases: hemostasis, inflammation, proliferation, and maturation. Skin microbiota has been reported to participate in orchestrating the wound healing both in negative and positive ways. Many studies reported that skin microbiota can impose negative and positive effects on the wound. Recent findings have shown that many bacterial species on human skin are able to convert aromatic amino acids into so-called trace amines (TAs) and convert corresponding precursors into dopamine and serotonin, which are all released into the environment. As a stress reaction, wounded epithelial cells release the hormone adrenaline (epinephrine), which activates the β2-adrenergic receptor (β2-AR), impairing the migration ability of keratinocytes and thus re-epithelization. This is where TAs come into play, as they act as antagonists of β2-AR and thus attenuate the effects of adrenaline. The result is that not only TAs but also TA-producing skin bacteria accelerate wound healing. Adrenergic receptors (ARs) play a key role in many physiological and disease-related processes and are expressed in numerous cell types. In this review, we describe the role of ARs in relation to wound healing in keratinocytes, immune cells, fibroblasts, and blood vessels and the possible role of the skin microbiota in wound healing.  相似文献   

16.
    
Platelet-released growth factors (PRGFs) or other thrombocyte concentrate products, e.g., Platelet-Rich Fibrin (PRF), have become efficient tools of regenerative medicine in many medical disciplines. In the context of wound healing, it has been demonstrated that treatment of chronic or complicated wounds with PRGF or PRF improves wound healing in the majority of treated patients. Nevertheless, the underlying cellular and molecular mechanism are still poorly understood. Therefore, we aimed to analyze if PRGF-treatment of human keratinocytes caused the induction of genes encoding paracrine factors associated with successful wound healing. The investigated genes were Semaphorin 7A (SEMA7A), Angiopoietin-like 4 (ANGPLT4), Fibroblast Growth Factor-2 (FGF-2), Interleukin-32 (IL-32), the CC-chemokine-ligand 20 (CCL20), the matrix-metalloproteinase-2 (MMP-2), the chemokine C-X-C motif chemokine ligand 10 (CXCL10) and the subunit B of the Platelet-Derived Growth Factor (PDGFB). We observed a significant gene induction of SEMA7A, ANGPLT4, FGF-2, IL-32, MMP-2 and PDGFB in human keratinocytes after PRGF treatment. The CCL20- and CXCL10 gene expressions were significantly inhibited by PRGF therapy. Signal transduction analyses revealed that the PRGF-mediated gene induction of SEMA7A, ANGPLT4, IL-32 and MMP-2 in human keratinocytes was transduced via the IL-6 receptor pathway. In contrast, EGF receptor signaling was not involved in the PRGF-mediated gene expression of analyzed genes in human keratinocytes. Additionally, treatment of ex vivo skin explants with PRGF confirmed a significant gene induction of SEMA7A, ANGPLT4, MMP-2 and PDGFB. Taken together, these results describe a new mechanism that could be responsible for the beneficial wound healing properties of PRGF or related thrombocytes concentrate products such as PRF.  相似文献   

17.
    
Type II diabetes mellitus (T2DM) is one of the most prevalent diseases in the world, associated with diabetic foot ulcers and impaired wound healing. There is an ongoing need for interventions effective in treating these two problems. Pre-clinical studies in this field rely on adequate animal models. However, producing such a model is near-impossible given the complex and multifactorial pathogenesis of T2DM. A leptin-deficient murine model was developed in 1959 and relies on either dysfunctional leptin (ob/ob) or a leptin receptor (db/db). Though monogenic, this model has been used in hundreds of studies, including diabetic wound healing research. In this study, we systematically summarize data from over one hundred studies, which described the mechanisms underlying wound healing impairment in this model. We briefly review the wound healing dynamics, growth factors’ dysregulation, angiogenesis, inflammation, the function of leptin and insulin, the role of advanced glycation end-products, extracellular matrix abnormalities, stem cells’ dysregulation, and the role of non-coding RNAs. Some studies investigated novel chronic diabetes wound models, based on a leptin-deficient murine model, which was also described. We also discussed the interventions studied in vivo, which passed into human clinical trials. It is our hope that this review will help plan future research.  相似文献   

18.
    
The cornea, an anterior ocular tissue that notably serves to protect the eye from external insults and refract light, requires constant epithelium renewal and efficient healing following injury to maintain ocular homeostasis. Although several key cell populations and molecular pathways implicated in corneal wound healing have already been thoroughly investigated, insufficient/impaired or excessive corneal wound healing remains a major clinical issue in ophthalmology, and new avenues of research are still needed to further improve corneal wound healing. Because of its implication in numerous cellular/tissular homeostatic processes and oxidative stress, there is growing evidence of the role of Hedgehog signaling pathway in physiological and pathological corneal wound healing. Reviewing current scientific evidence, Hedgehog signaling and its effectors participate in corneal wound healing mainly at the level of the corneal and limbal epithelium, where Sonic Hedgehog-mediated signaling promotes limbal stem cell proliferation and corneal epithelial cell proliferation and migration following corneal injury. Hedgehog signaling could also participate in corneal epithelial barrier homeostasis and in pathological corneal healing such as corneal injury-related neovascularization. By gaining a better understanding of the role of this double-edged sword in physiological and pathological corneal wound healing, fascinating new research avenues and therapeutic strategies will undoubtedly emerge.  相似文献   

19.
    
Skin injuries are an urgent health issue, which raises a great concern in the clinic. Although numerous strategies have been proposed to fabricate skin substitutes for treatment of wounds over the past several decades, fabricating an ideal skin substitute to replace the damaged one can still be a problem. In this study, a novel biomimetic 3D composite skin scaffold is fabricated by combining electrohydrodynamic (EHD) jetting, electrospinning, and coating techniques. Here, the first polycaprolactone (PCL) porous structure is produced by the EHD jetting. Next, the second polylactic acid (PLA) membrane consisted of nanoscale fibers is prepared on the PCL porous structure via the electrospinning. The PCL porous structure and PLA fibers membrane can mimic the dermis and epidermis layer, respectively. Furthermore, gelatin is used as coating solution to enhance the biocompatibility of the scaffold. The structure and morphology of the fabricated scaffolds are analyzed, and the mechanical properties are investigated as well. Moreover, the in vitro and in vivo experiments demonstrate the biocompatibility of the materials and the fabrication process. In conclusion, these results demonstrate that the composite scaffold is effective and holds great potential for skin regeneration in the clinic.  相似文献   

20.
    
Chondroitin obtained through biotechnological processes (BC) shares similarities with both chondroitin sulfate (CS), due to the dimeric repetitive unit, and hyaluronic acid (HA), as it is unsulfated. In the framework of this experimental research, formulations containing BC with an average molecular size of about 35 KDa and high molecular weight HA (HHA) were characterized with respect to their rheological behavior, stability to enzymatic hydrolysis and they were evaluated in different skin damage models. The rheological characterization of the HHA/BC formulation revealed a G’ of 92 ± 3 Pa and a G″ of 116 ± 5 Pa and supported an easy injectability even at a concentration of 40 mg/mL. HA/BC preserved the HHA fraction better than HHA alone. BTH was active on BC alone only at high concentration. Assays on scratched keratinocytes (HaCaT) monolayers showed that all the glycosaminoglycan formulations accelerated cell migration, with HA/BC fastening healing 2-fold compared to the control. In addition, in 2D HaCaT cultures, as well as in a 3D skin tissue model HHA/BC efficiently modulated mRNA and protein levels of different types of collagens and elastin remarking a functional tissue physiology. Finally, immortalized human fibroblasts were challenged with TNF-α to obtain an in vitro model of inflammation. Upon HHA/BC addition, secreted IL-6 level was lower and efficient ECM biosynthesis was re-established. Finally, co-cultures of HaCaT and melanocytes were established, showing the ability of HHA/BC to modulate melanin release, suggesting a possible effect of this specific formulation on the reduction of stretch marks. Overall, besides demonstrating the safety of BC, the present study highlights the potential beneficial effect of HHA/BC formulation in different damage dermal models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号