首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pathological vascular wall remodeling refers to the structural and functional changes of the vessel wall that occur in response to injury that eventually leads to cardiovascular disease (CVD). Vessel wall are composed of two major primary cells types, endothelial cells (EC) and vascular smooth muscle cells (VSMCs). The physiological communications between these two cell types (EC–VSMCs) are crucial in the development of the vasculature and in the homeostasis of mature vessels. Moreover, aberrant EC–VSMCs communication has been associated to the promotor of various disease states including vascular wall remodeling. Paracrine regulations by bioactive molecules, communication via direct contact (junctions) or information transfer via extracellular vesicles or extracellular matrix are main crosstalk mechanisms. Identification of the nature of this EC–VSMCs crosstalk may offer strategies to develop new insights for prevention and treatment of disease that curse with vascular remodeling. Here, we will review the molecular mechanisms underlying the interplay between EC and VSMCs. Additionally, we highlight the potential applicable methodologies of the co-culture systems to identify cellular and molecular mechanisms involved in pathological vascular wall remodeling, opening questions about the future research directions.  相似文献   

2.
Increasing adipose tissue mass in obesity directly correlates with elevated circulating leptin levels. Leptin is an adipokine known to play a role in numerous biological processes including regulation of energy homeostasis, inflammation, vascular function and angiogenesis. While physiological concentrations of leptin may exhibit multiple beneficial effects, chronically elevated pathophysiological levels or hyperleptinemia, characteristic of obesity and diabetes, is a major risk factor for development of atherosclerosis. Hyperleptinemia results in a state of selective leptin resistance such that while beneficial metabolic effects of leptin are dampened, deleterious vascular effects of leptin are conserved attributing to vascular dysfunction. Leptin exerts potent proatherogenic effects on multiple vascular cell types including macrophages, endothelial cells and smooth muscle cells; these effects are mediated via an interaction of leptin with the long form of leptin receptor, abundantly expressed in atherosclerotic plaques. This review provides a summary of recent in vivo and in vitro studies that highlight a role of leptin in the pathogenesis of atherosclerotic complications associated with obesity and diabetes.  相似文献   

3.
The biological activities of interleukins, a group of circulating cytokines, are linked to the immuno-pathways involved in many diseases. Mounting evidence suggests that interleukin-1β (IL-1β) plays a significant role in the pathogenesis of various types of hypertension. In this review, we summarized recent findings linking IL-1β to systemic arterial hypertension, pulmonary hypertension, and gestational hypertension. We also outlined the new progress in elucidating the potential mechanisms of IL-1β in hypertension, focusing on it’s regulation in inflammation, vascular smooth muscle cell function, and extracellular remodeling. In addition, we reviewed recent studies that highlight novel findings examining the function of non-coding RNAs in regulating the activity of IL-1β and its associated proteins in the setting of hypertension. The information collected in this review provides new insights into understanding the pathogenesis of hypertension and could lead to the discovery of new anti-hypertensive therapies to combat this highly prevalent disease.  相似文献   

4.
The antidiabetic drug empagliflozin is reported to produce a range of cardiovascular effects, including a reduction in systemic blood pressure. However, whether empagliflozin directly modulates the contractility of resistance-size mesenteric arteries remains unclear. Here, we sought to investigate if empagliflozin could relax resistance-size rat mesenteric arteries and the associated underlying molecular mechanisms. We found that acute empagliflozin application produces a concentration-dependent vasodilation in myogenic, depolarized and phenylephrine (PE)-preconstricted mesenteric arteries. Selective inhibition of smooth muscle cell voltage-gated K+ channels KV1.5 and KV7 abolished empagliflozin-induced vasodilation. In contrast, pharmacological inhibition of large-conductance Ca2+-activated K+ (BKCa) channels and ATP-sensitive (KATP) channels did not abolish vasodilation. Inhibition of the vasodilatory signaling axis involving endothelial nitric oxide (NO), smooth muscle cell soluble guanylyl cyclase (sGC) and protein kinase G (PKG) did not abolish empagliflozin-evoked vasodilation. Inhibition of the endothelium-derived vasodilatory molecule prostacyclin (PGI2) had no effect on the vasodilation. Consistently, empagliflozin-evoked vasodilation remained unaltered by endothelium denudation. Overall, our data suggest that empagliflozin stimulates smooth muscle cell KV channels KV1.5 and KV7, resulting in vasodilation in resistance-size mesenteric arteries. This study demonstrates for the first time a novel mechanism whereby empagliflozin regulates arterial contractility, resulting in vasodilation. Due to known antihypertensive properties, treatment with empagliflozin may complement conventional antihypertensive therapy.  相似文献   

5.
Clinical and animal studies have demonstrated that chemotherapeutic doxorubicin (DOX) increases arterial stiffness, a predictor of cardiovascular risk. Despite consensus about DOX-impaired endothelium-dependent vasodilation as a contributing mechanism, some studies have reported conflicting results on vascular smooth muscle cell (VSMC) function after DOX treatment. The present study aimed to investigate the effects of DOX on VSMC function. To this end, mice received a single injection of 4 mg DOX/kg, or mouse aortic segments were treated ex vivo with 1 μM DOX, followed by vascular reactivity evaluation 16 h later. Phenylephrine (PE)-induced VSMC contraction was decreased after DOX treatment. DOX did not affect the transient PE contraction dependent on Ca2+ release from the sarcoplasmic reticulum (0 mM Ca2+), but it reduced the subsequent tonic phase characterised by Ca2+ influx. These findings were supported by similar angiotensin II and attenuated endothelin-1 contractions. The involvement of voltage-gated Ca2+ channels in DOX-decreased contraction was excluded by using levcromakalim and diltiazem in PE-induced contraction and corroborated by similar K+ and serotonin contractions. Despite the evaluation of multiple blockers of transient receptor potential channels, the exact mechanism for DOX-decreased VSMC contraction remains elusive. Surprisingly, DOX reduced ex vivo but not in vivo arterial stiffness, highlighting the importance of appropriate timing for evaluating arterial stiffness in DOX-treated patients.  相似文献   

6.
Vascular smooth muscle cells (VSMCs) display extraordinary phenotypic plasticity. This allows them to differentiate or dedifferentiate, depending on environmental cues. The ability to ‘switch’ between a quiescent contractile phenotype to a highly proliferative synthetic state renders VSMCs as primary mediators of vascular repair and remodelling. When their plasticity is pathological, it can lead to cardiovascular diseases such as atherosclerosis and restenosis. Coinciding with significant technological and conceptual innovations in RNA biology, there has been a growing focus on the role of alternative splicing in VSMC gene expression regulation. Herein, we review how alternative splicing and its regulatory factors are involved in generating protein diversity and altering gene expression levels in VSMC plasticity. Moreover, we explore how recent advancements in the development of splicing-modulating therapies may be applied to VSMC-related pathologies.  相似文献   

7.
8.
9.
Reactive oxygen species (ROS) are natural byproducts of oxygen metabolism in the cell. At physiological levels, they play a vital role in cell signaling. However, high ROS levels cause oxidative stress, which is implicated in cardiovascular diseases (CVD) such as atherosclerosis, hypertension, and restenosis after angioplasty. Despite the great amount of research conducted to identify the role of ROS in CVD, the image is still far from being complete. A common event in CVD pathophysiology is the switch of vascular smooth muscle cells (VSMCs) from a contractile to a synthetic phenotype. Interestingly, oxidative stress is a major contributor to this phenotypic switch. In this review, we focus on the effect of ROS on the hallmarks of VSMC phenotypic switch, particularly proliferation and migration. In addition, we speculate on the underlying molecular mechanisms of these cellular events. Along these lines, the impact of ROS on the expression of contractile markers of VSMCs is discussed in depth. We conclude by commenting on the efficiency of antioxidants as CVD therapies.  相似文献   

10.
Nitric oxide (NO) is a powerful vasodilator in different vascular beds and NO-donors are widely used in clinical practice. Early data suggested that NO and NO-donors activate vascular smooth muscle high-conductance, calcium-activated potassium channels (BK channels). There exist two hypotheses explaining the effect of NO and NO-donors on BK channels—one stating that protein kinase G (PKG) mediates the effect of NO, and the other one stating that NO acts directly on the channel. Thus, the degree of contribution of PKG to the NO-induced activation of the BK channel is still not completely clear. This study tested the hypothesis that the sodium nitroprusside (SNP)-induced activation of vascular smooth muscle BK channels is fully mediated by PKG. This hypothesis was investigated using the patch-clamp technique and freshly isolated smooth muscle cells from rat tail artery. In whole-cell experiments, SNP considerably increased the outward current compared with the addition of the bath solution. SNP did not alter the current in the presence of iberiotoxin, the specific blocker of BK channels, during co-application with hydroxocobalamin, an NO-scavenger, and in the presence of Rp-8-Br-PET-cGMPS, the specific PKG-inhibitor. In inside-out patches, the activity of BK channels was increased by SNP, SNAP, and DEA-NO. However, these effects did not differ from the effect of the application of drug-free bath solution. Furthermore, a similar increase in single BK channel activity was induced by Rp-8-Br-PET-cGMPS, Rp-8-Br-PET-cGMPS together with SNP, hydroxocobalamin, and hydroxocobalamin together with SNP or DEA-NO. Finally, the activity of excised BK channels did not change in the absence of any application but was considerably increased by PKG compared with the addition of drug-free bath solution. These results suggest that NO released from NO-donors stimulates the BK current only through activation of PKG.  相似文献   

11.
Plasma factor XIII (pFXIII) is a heterotetramer of FXIII-A and FXIII-B subunits. The cellular form (cFXIII), a dimer of FXIII-A, is present in a number of cell types. Activated FXIII (FXIIIa), a transglutaminase, plays an important role in clot stabilization, wound healing, angiogenesis and maintenance of pregnancy. It has a direct effect on vascular endothelial cells and fibroblasts, which have been implicated in the development of atherosclerotic plaques. Our aim was to explore the effect of FXIIIa on human aortic smooth muscle cells (HAoSMCs), another major cell type in the atherosclerotic plaque. Osteoblastic transformation induced by Pi and Ca2+ failed to elicit the expression of cFXIII in HAoSMCs. EZ4U, CCK-8 and CytoSelect Wound Healing assays were used to investigate cell proliferation and migration. The Sircol Collagen Assay Kit was used to monitor collagen secretion. Thrombospondin-1 (TSP-1) levels were measured by ELISA. Cell-associated TSP-1 was detected by the immunofluorescence technique. The TSP-1 mRNA level was estimated by RT-qPCR. Activated recombinant cFXIII (rFXIIIa) increased cell proliferation and collagen secretion. In parallel, a 67% decrease in TSP-1 concentration in the medium and a 2.5-fold increase in cells were observed. TSP-1 mRNA did not change significantly. These effects of FXIIIa might contribute to the pathogenesis of atherosclerotic plaques.  相似文献   

12.
13.
14.
Endothelial progenitor cells (EPCs) are involved in vascular repair and modulate properties of smooth muscle cells (SMCs) relevant for their contribution to neointima formation following injury. Considering the relevant role of the CXCL12–CXCR4 axis in vascular homeostasis and the potential of EPCs and SMCs to release CXCL12 and express CXCR4, we analyzed the engagement of the CXCL12–CXCR4 axis in various modes of EPC–SMC interaction relevant for injury- and lipid-induced atherosclerosis. We now demonstrate that the expression and release of CXCL12 is synergistically increased in a CXCR4-dependent mechanism following EPC–SMC interaction during co-cultivation or in response to recombinant CXCL12, thus establishing an amplifying feedback loop Additionally, mechanical injury of SMCs induces increased release of CXCL12, resulting in enhanced CXCR4-dependent recruitment of EPCs to SMCs. The CXCL12–CXCR4 axis is crucially engaged in the EPC-triggered augmentation of SMC migration and the attenuation of SMC apoptosis but not in the EPC-mediated increase in SMC proliferation. Compared to EPCs alone, the alliance of EPC–SMC is superior in promoting the CXCR4-dependent proliferation and migration of endothelial cells. When direct cell–cell contact is established, EPCs protect the contractile phenotype of SMCs via CXCL12–CXCR4 and reverse cholesterol-induced transdifferentiation toward a synthetic, macrophage-like phenotype. In conclusion we show that the interaction of EPCs and SMCs unleashes a CXCL12–CXCR4-based autoregulatory feedback loop promoting regenerative processes and mediating SMC phenotype control to potentially guard vascular homeostasis.  相似文献   

15.
A variety of vascular pathologies, including hypertension, restenosis and atherosclerosis, are characterized by vascular smooth muscle cell (VSMC) hypertrophy and migration. NADPH oxidase 1 (Nox1) plays a pivotal role in these phenotypes via distinct downstream signaling. However, the mediators differentiating these distinct phenotypes and their precise role in vascular disease are still not clear. The present study was designed to identify novel targets of VSMC Nox1 signaling using 2D Differential In-Gel Electrophoresis and Mass Spectrometry (2D-DIGE/MS). VSMC treatment with scrambled (Scrmb) or Nox1 siRNA and incubation with the oxidant hydrogen peroxide (H2O2; 50 μM, 3 h) followed by 2D-DIGE/MS on cell lysates identified 10 target proteins. Among these proteins, actin-related protein 2/3 complex subunit 2 (ARPC2) with no previous link to Nox isozymes, H2O2, or other reactive oxygen species (ROS), was identified and postulated to play an intermediary role in VSMC migration. Western blot confirmed that Nox1 mediates H2O2-induced ARPC2 expression in VSMC. Treatment with a p38 MAPK inhibitor (SB203580) resulted in reduced ARPC2 expression in H2O2-treated VSMC. Additionally, wound-healing “scratch” assay confirmed that H2O2 stimulates VSMC migration via Nox1. Importantly, gene silencing of ARPC2 suppressed H2O2-stimulated VSMC migration. These results demonstrate for the first time that Nox1-mediated VSMC migration involves ARPC2 as a downstream signaling target.  相似文献   

16.
Nitric oxide (NO) has been shown to stimulate differentiation and increase the survival of ganglionic sympathetic neurons. The proportion of neuronal NOS-immunoreactive sympathetic preganglionic neurons is particularly high in newborn rats and decreases with maturation. However, the role of NO in the development of vascular sympathetic innervation has never been studied before. We tested the hypothesis that intrauterine NO deficiency weakened the development of vascular sympathetic innervation and thereby changed the contractility of peripheral arteries and blood pressure level in two-week-old offspring. Pregnant rats consumed NOS inhibitor L-NAME (250 mg/L in drinking water) from gestational day 10 until delivery. Pups in the L-NAME group had a reduced body weight and blood level of NO metabolites at 1–2 postnatal days. Saphenous arteries from two-week-old L-NAME offspring demonstrated a lower density of sympathetic innervation, a smaller inner diameter, reduced maximal active force and decreased α-actin/β-actin mRNA expression ratio compared to the controls. Importantly, pups in the L-NAME group exhibited decreased blood pressure levels before, but not after, ganglionic blockade with chlorisondamine. In conclusion, intrauterine L-NAME exposure is followed by the impaired development of the sympathetic nervous system in early postnatal life, which is accompanied by the structural and functional remodeling of arterial blood vessels.  相似文献   

17.
Vascular calcification, especially medial artery calcification, is associated with cardiovascular death in patients with diabetes mellitus and chronic kidney disease (CKD). To determine the underlying mechanism of vascular calcification, we have demonstrated in our previous report that advanced glycation end-products (AGEs) stimulated calcium deposition in vascular smooth muscle cells (VSMCs) through excessive oxidative stress and phenotypic transition into osteoblastic cells. Since AGEs can induce apoptosis, in this study we investigated its role on VSMC apoptosis, focusing mainly on the underlying mechanisms. A rat VSMC line (A7r5) was cultured, and treated with glycolaldehyde-derived AGE-bovine serum albumin (AGE3-BSA). Apoptotic cells were identified by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. To quantify apoptosis, an enzyme-linked immunosorbent assay (ELISA) for histone-complexed DNA fragments was employed. Real-time PCR was performed to determine the mRNA levels. Treatment of A7r5 cells with AGE3-BSA from 100 µg/mL concentration markedly increased apoptosis, which was suppressed by Nox inhibitors. AGE3-BSA significantly increased the mRNA expression of NAD(P)H oxidase components including Nox4 and p22phox, and these findings were confirmed by protein levels using immunofluorescence. Dihydroethidisum assay showed that compared with cBSA, AGE3-BSA increased reactive oxygen species level in A7r5 cells. Furthermore, AGE3-induced apoptosis was significantly inhibited by siRNA-mediated knockdown of Nox4 or p22phox. Double knockdown of Nox4 and p22phox showed a similar inhibitory effect on apoptosis as single gene silencing. Thus, our results demonstrated that NAD(P)H oxidase-derived oxidative stress are involved in AGEs-induced apoptosis of VSMCs. These findings might be important to understand the pathogenesis of vascular calcification in diabetes and CKD.  相似文献   

18.
The activity of many vasomotor signaling pathways strongly depends on extracellular/intracellular pH. Nitric oxide (NO) is one of the most important vasodilators produced by the endothelium. In this review, we present evidence that in most vascular beds of mature mammalian organisms metabolic or respiratory acidosis increases functional endothelial NO-synthase (eNOS) activity, despite the observation that direct effects of low pH on eNOS enzymatic activity are inhibitory. This can be explained by the fact that acidosis increases the activity of signaling pathways that positively regulate eNOS activity. The role of NO in the regulation of vascular tone is greater in early postnatal ontogenesis compared to adulthood. Importantly, in early postnatal ontogenesis acidosis also augments functional eNOS activity and its contribution to the regulation of arterial contractility. Therefore, the effect of acidosis on total peripheral resistance in neonates may be stronger than in adults and can be one of the reasons for an undesirable decrease in blood pressure during neonatal asphyxia. The latter, however, should be proven in future studies.  相似文献   

19.
Previously, the abundance of p42/44 and p38 MAPK proteins had been shown to be higher in arteries of 1- to 2-week-old compared to 2- to 3-month-old rats. However, the role of MAPKs in vascular tone regulation in early ontogenesis remains largely unexplored. We tested the hypothesis that the contribution of p42/44 and p38 MAPKs to the contraction of peripheral arteries is higher in the early postnatal period compared to adulthood. Saphenous arteries of 1- to 2-week-old and 2- to 3-month-old rats were studied using wire myography and western blotting. The α1-adrenoceptor agonist methoxamine did not increase the phosphorylation level of p38 MAPK in either 1- to 2-week-old or 2- to 3-month-old rats. Accordingly, inhibition of p38 MAPK did not affect arterial contraction to methoxamine in either age group. Methoxamine increased the phosphorylation level of p42/44 MAPKs in arteries of 2- to 3-month-old and of p44 MAPK in 1- to 2-week-old rats. Inhibition of p42/44 MAPKs reduced methoxamine-induced contractions in arteries of 2- to 3-month-old, but not 1- to 2-week-old rats. Thus, despite a high abundance in arterial tissue, p38 and p42/44 MAPKs do not regulate contraction of the saphenous artery in the early postnatal period. However, p42/44 MAPK activity contributes to arterial contractions in adult rats.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号