首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
对5个圆弧扩大头隔板贯通式箱形柱-H型钢梁异型节点和1个基本型异型节点进行低周往复循环加载试验,研究圆弧扩大头构造对隔板贯通式箱形柱-H型钢梁异型节点在强震时的破坏模式、承载力、塑性转角、滞回性能、骨架曲线、刚度退化和耗能性能等抗震性能的影响规律。试验结果显示,基本型异型节点在刚度较大、几何变化剧烈(应力集中严重)的大截面梁翼缘对接焊缝侧边开裂,节点的塑性转角约为0.015rad,达不到FEMA要求的0.03rad。圆弧扩大头异型节点在隔板圆弧扩大区形成塑性铰,节点的塑性转角达到0.033~0.044rad,承载力和耗能性能较基本型异型节点分别提高41.7%~53%和173%~500%。隔板圆弧扩大区屈曲、对接焊缝延性拉断、贯通式隔板与柱壁板间焊缝剪切破坏、梁腹板焊接孔开裂是圆弧扩大头异型节点的主要破坏模式。隔板圆弧扩大头构造和梁翼缘对接焊缝移至远离节点区的措施,缓和了节点区焊缝过于密集和焊接热影响区的交叉影响,规避了梁翼缘对接焊缝处的几何突变(应力集中)和过早脆断。此次试验的隔板贯通式箱形柱-H型钢梁异型节点,大截面梁均先于小截面梁断裂,且均未出现以往内隔板式节点试验中常见的柱壁板间焊缝撕裂现象。  相似文献   

2.
对圆弧加强隔板贯通方钢管轻骨料混凝土柱-H形梁与箱形梁异形节点和基本型异形节点进行循环加载试验,研究了贯通隔板圆弧扩大头构造对异形节点抗震性能的影响,获得了该类节点的破坏模式、滞回性能、承载力和塑性转角等抗震性能参数。基于试验结果和力学分析,建议了异形节点域的抗弯、抗剪计算模型,推导了异形节点域的抗弯、抗剪承载力计算公式。结果表明:基本型异形节点滞回曲线劣化明显,节点在刚度较大、几何突变的箱形梁翼缘对接焊缝边缘脆断;隔板圆弧加强异形节点的滞回曲线饱满,承载能力和刚度退化不明显,主要破坏模式为在隔板圆弧加强区形成塑性铰,梁翼缘对接焊缝延性开裂;加载至节点破坏时,贯通隔板与柱壁板间焊缝未发生撕裂破坏,节点域内轻骨料混凝土未压碎或拉裂,轻骨料混凝土与隔板和柱壁板间未发生剥离或滑移;隔板圆弧加强异形节点的塑性转角可达0.038~0.056 rad,承载力较基本型异形节点提高21.5%~56.2%。  相似文献   

3.
通过对折线加强隔板贯通方钢管轻骨料混凝土柱-H形钢梁异型节点和基本型异型节点试件进行低周往复加载试验,研究了隔板折线加强构造对节点破坏形态、承载力、塑性转角、滞回性能、骨架曲线、刚度退化和耗能等的影响。试验结果表明:基本型异型节点在刚度较大、几何尺寸变化较大的大截面梁翼缘对接焊缝侧边开裂,节点的塑性转角约为0.028 rad;隔板折线加强异型节点的主要破坏模式为隔板折线加强区形成塑性铰及延性拉断、梁腹板焊接孔开裂及梁翼缘对接焊缝断裂,其塑性转角可达0.034~0.057 rad,承载力和耗能能力较基本型异型节点分别提高16.5%~47.0%和21.2%~144.0%;隔板贯通方钢管轻骨料混凝土柱-H形钢梁异型节点中,大截面梁先于小截面梁破坏,柱壁板间焊缝未发生撕裂破坏,轻骨料混凝土未发生压碎、拉裂、剥离或滑移破坏,节点的抗震性能主要受钢梁和隔板间焊缝破坏(而非轻骨料混凝土)的影响。  相似文献   

4.
刘涛  王万祯  孙韶江 《空间结构》2014,(1):75-80,88
对1个隔板贯通式箱型中柱-H型钢梁常规节点和3个圆弧扩大头及梁翼缘圆孔削弱型节点进行了低周往复循环加载试验.试验结果表明,常规节点在梁翼缘对接焊缝处脆断,节点塑性转角约为0.016rad;圆弧扩大头及圆孔削弱型节点在梁翼缘圆孔削弱处断裂,裂纹起始于圆孔侧边,塑性转角较常规节点提高约19%,承载力较常规节点降低5.5%~9.4%,滞回曲线的包络面积(耗能性能)较常规节点约提高0.2%~9.0%.圆弧扩大头构造降低了梁翼缘对接焊缝的应力集中程度,避免了对接焊缝过早脆断;圆孔削弱构造促使梁削弱截面形成塑性铰.  相似文献   

5.
为研究隔板贯通方钢管柱-H型钢梁异型节点强震灾变机理和延性节点构造,对常规异型节点进行了低周往复循环加载试验和基于结构钢椭球面断裂模型及偶联的椭球面屈服模型的断裂分析.结果显示,常规异型节点在大截面梁翼缘对接焊缝边缘开裂,节点的塑性转角约为0.015rad,达不到FEMA要求的0.03rad.提出隔板圆弧扩大头节点构造并进行数值分析,结果表明,扩大头构造消除了对接焊缝沿梁翼缘宽度的几何突变,降低了对接焊缝的应力集中程度和脆断风险,塑性转角均达到了0.03rad,承载力较常规异型节点提高15.9%~39%.  相似文献   

6.
对1个内隔板式箱型柱-H型钢梁常规节点和3个梁翼缘扩大头-圆孔削弱型节点进行了循环加载试验,并进行了基于结构钢椭球面断裂模型及耦联的椭球面屈服模型的数值模拟和断裂分析.结果显示,常规节点裂纹起始于梁翼缘对接焊缝侧边,未能形成有效转动能力的塑性铰,节点的塑性转角约为0.02rad.梁翼缘扩大头-圆孔削弱型节点在圆孔削弱梁截面形成塑性铰,大孔侧边开裂风险较其他区域大,扩大头构造显著降低了对接焊缝的断裂风险.当内隔板与柱壁板间焊缝质量较好时,圆弧扩大头-圆孔削弱型节点的塑性转角可达到FEMA要求的0.03rad,承载力较常规节点提高39.8%~52.9%.  相似文献   

7.
对钢箱梁和H梁翼缘三面围焊圆弧隔板贯通变截面箱形钢柱节点进行了循环加载试验,获得了该类节点的破坏模式、滞回曲线、承载力、塑性转角、耗能能力、节点域和关键部位的应变演化规律等抗震性能指标.试验结果显示:节点域柱壁板间焊缝、柱壁板与隔板焊缝开裂是该类节点的主要破坏模式;截面积较小的节点域上柱腹板剪应变远大于截面积较大的下柱腹板,节点域上柱壁板间焊缝先于下柱开裂,靠近箱梁侧柱壁板与隔板间焊缝先于H梁侧开裂;箱梁的滞回性能好于H梁,但承载力低于H梁;梁翼缘与贯通隔板采用三面围焊的连接方式,避免了以往的节点构造中狭窄的梁翼缘和宽大的隔板间对接焊缝过早开裂的问题.  相似文献   

8.
对5个折线隔板加强的隔板贯通式箱形柱-翼缘削弱箱形梁与H形梁异型节点和1个基本型隔板贯通式异型节点进行拟静力试验,研究折线隔板扩大头和箱形梁翼缘削弱型隔板贯通式箱形柱-箱形梁与H形梁异型节点的破坏模式、滞回性能、承载力、塑性转角、刚度退化和耗能能力等。试验结果表明:基本型异型节点在几何尺寸变化剧烈(应力高度集中)的箱形梁翼缘对接焊缝侧边开裂,节点的塑性转角约为0.014 rad,达不到FEMA要求的0.03 rad;折线隔板扩大头异型节点的塑性转角达到0.032~0.046 rad,承载力和耗能能力较基本型异型节点分别提高22.2%~64.3%和6.32~9.94倍;箱形梁翼缘与隔板对接焊缝断裂、隔板与柱壁板间焊缝剪切撕裂是折线隔板扩大头异型节点的主要破坏模式;试验的隔板贯通式箱形柱-箱形梁与H形梁异型节点显示,刚度较大的箱形梁翼缘对接焊缝均先于H形梁断裂。  相似文献   

9.
对隔板贯通方钢管轻骨料混凝土柱-H形钢梁异型节点试件进行了循环加载试验,并进行基于结构钢椭球面断裂模型及耦联的屈服模型和轻骨料混凝土二次曲面通用破坏面模型的数值模拟和破坏机理分析.数值分析结果表明:基本型异型节点梁翼缘对接焊缝侧边应力集中严重,断裂风险大;贯通隔板折线加强构造降低了梁翼缘对接焊缝处的应力集中程度和断裂风险,使屈服区形成于远离节点区的隔板折线加强段内;节点域内轻骨料混凝土的应力场未达到通用破坏面模型计算的强度值,未发生压碎、拉裂或滑移破坏.  相似文献   

10.
对折线隔板贯通变截面方钢管轻骨料混凝土边柱-钢箱梁节点和基本型节点进行了循环加载试验,获得了节点的破坏模式、滞回曲线、塑性转角、耗能能力、节点域应变演化等抗震性能指标.结果 显示,上隔板与小截面柱间焊缝的剪应变远大于下隔板与大截面柱间焊缝;基本型节点在几何突变剧烈的梁翼缘对接焊缝侧边、梁腹板角焊缝端点及构造复杂的梁腹板...  相似文献   

11.
为研究梁翼缘、腹板开孔构造对方钢管混凝土柱-H型钢梁节点破坏模式的影响,对6个方钢管混凝土柱-H型钢梁节点(1个常规节点和5个开孔节点)进行了低周循环加载试验。试验结果表明:按现行规范设计的方钢管混凝土柱-H型钢梁常规节点在梁翼缘对接焊缝处脆性断裂,节点的塑性转角不能满足临时指南FEMA的要求;合理的梁翼缘和腹板开孔构造,显著减缓了方钢管混凝土柱-H型钢梁节点梁翼缘对接焊缝的应力集中,梁削弱截面形成塑性铰,节点塑性转角达到0.03 rad,满足了临时指南FEMA的要求;其滞回性能稳定,承载力和常规节点相当;内隔板与柱壁板间焊缝质量较差的节点在试验中发生柱壁外鼓、柱壁间焊缝撕裂,节点延性和承载力明显下降。  相似文献   

12.
为了研究地震作用下方钢管混凝土柱-钢梁角钢连接节点的受力性能,设计了3个梁柱节点试件并对其进行低周往复循环荷载试验,分析了角钢短肢长肢比和角钢厚度对试件的刚度、承载力、耗能能力、延性性能及节点域剪切变形的影响。试验结果表明:角钢连接的塑性铰出现在角钢与柱壁相接触部位,往复荷载下最终破坏形态为角钢与柱壁焊接部位出现角钢撕裂现象,通过增加角钢短肢长肢比和增加角钢厚度可以将塑性铰外移,使角钢与柱壁相接触部位的撕裂程度减轻,从而有效保护节点核心区。增加角钢的厚度对节点的初始刚度及承载力影响明显,随着角钢厚度的增加,节点的初始刚度和承载力随之增加;增加角钢短肢长肢比能够提高节点的耗能能力和刚度。该节点具有较高的承载力、刚度及较大的变形能力,符合抗震设计理念。  相似文献   

13.
带悬臂梁段拼接的梁柱连接循环荷载试验研究   总被引:12,自引:0,他引:12       下载免费PDF全文
为了检验带悬臂梁段拼接的梁柱连接抗震性能,对4个试件进行了循环加载试验。试验侧重于对拼接节点的研究,采用10.9级高强螺栓摩擦型连接,翼缘和腹板全部拼接。试验结果表明:螺栓拼接节点的延性远好于梁柱焊缝连接;较弱的拼接节点产生较大的塑性变形;接触面的滑移摩擦、螺栓与孔壁的挤压和翼缘拼接板的屈曲都使连接具有良好的耗能能力;但滑移伴随有剧烈的响声,会使人产生心理恐慌。根据试验结果提出了设计建议:尽量将拼接设计得弱些,可以提高梁柱连接的转动能力,减少地震作用向梁柱连接焊缝的输入,延缓焊缝的脆性破坏。  相似文献   

14.
火电厂主厂房型钢混凝土混合结构中存在由于错层、变梁变柱截面引起的异型中节点,选取5个代表性节点进行1∶5缩尺拟静力试验,研究该类节点的滞回性能、耗能能力、延性、刚度退化以及承载能力。研究结果表明:受强梁弱柱特性的影响,4个型钢混凝土异型中节点主要发生不利于抗震的柱端塑性铰破坏,而钢筋混凝土异型中节点由于梁柱刚度比较大主要发生核心区剪切破坏;大小梁错层高度对型钢混凝土异型中节点的承载力、延性性能与刚度特性均有一定的影响,但规律并不明显;型钢混凝土柱-钢筋混凝土梁异型中节点的耗能能力强于钢筋混凝土异型中节点,但受破坏模式的影响,其承载能力、延性与刚度等均低于钢筋混凝土异型中节点;相比采用钢筋混凝土梁的型钢混凝土异型中节点,采用型钢混凝土梁的型钢混凝土异型中节点的开裂荷载高,初始刚度较大,但承载力、延性与耗能能力并未得到明显提高。  相似文献   

15.
十字形钢管混凝土柱框架中节点抗震性能试验研究   总被引:1,自引:0,他引:1  
以十字形截面钢管混凝土异形柱-钢梁框架中柱节点为研究对象,按1∶2比例设计了4个弱节点和强节点模型,通过施加恒定轴压比的竖向荷载和低周反复水平荷载,对节点模型进行了加载破坏试验。试验结果表明:弱节点试件破坏形态为节点核心区剪切破坏,随轴压比增大,试件受剪承载力提高,但其延性性能降低;强节点试件破坏形态为梁端受弯破坏,破坏前经历了较大的塑性变形,延性系数达到了5.65。由此可见,合理地设计钢管混凝土异形柱-钢梁框架中节点,可保证其延性破坏,实现"强柱弱梁,节点更强"的设计原则,满足抗震性能要求。  相似文献   

16.
介绍了钢管柱-H形梁连接内加劲铸钢模块节点的概念设计方法,对该节点进行了循环往复加载试验研究,考虑了不同轴压比对节点抗震性能的影响。试验结果表明:提出的铸钢模块节点具有良好的延性、较好的耗能能力、较高的承载力,可充分发挥节点域的剪切塑性耗能;铸钢模块节点的延性和耗能能力随着轴压比的增大略有降低。现行美国钢结构规范中的节点受剪承载力公式经修正后可适用于铸钢模块节点,且偏于安全;通过控制梁与节点域的相对强弱,可实现对节点屈服顺序的控制。  相似文献   

17.
针对HRB400钢筋闪光对焊接头的应力腐蚀过程进行研究.首先进行环境试验,然后对以下5组试件进行力学性能测试:钢筋母材、钢筋母材21 d5%NaCl溶液侵泡、原始闪光对焊接头、机械加工去除焊接余高的对焊接头、机械加工去除焊接余高的对焊接头21 d5%NaCl溶液侵泡及未去除焊接余高的对焊接头21 d5%NaCl溶液侵泡;并结合有限元模拟分析,最终发现焊接过程使对焊接头产生较大的应力集中,在腐蚀环境下成为混凝土中钢筋性能下降的重要原因.对比试验显示,在焊接区域和焊接夹具的位置,应力腐蚀裂纹更有可能出现.研究结果表明,必须严格控制钢筋生产的工艺过程,并有效防止腐蚀介质的侵蚀,以保证建筑物的长期安全使用.  相似文献   

18.
壁式钢管混凝土柱是一种特殊的矩形钢管混凝土柱,针对壁式钢管混凝土柱截面特点,提出了壁式钢管混凝土柱平面外穿芯拉杆-端板连接梁柱节点。通过3个足尺节点试件的低周反复加载试验和有限元分析,对其破坏模式、滞回行为、承载能力、变形性能等进行分析。结果表明:节点的破坏模式为钢梁塑性铰区破坏,破坏区域钢梁上下翼缘屈曲或撕裂,梁与端板连接焊缝撕裂;滞回曲线稳定饱满,无明显捏拢;节点域混凝土损伤微小;破坏时位移延性系数大于3.0,等效黏滞阻尼系数大于0.34,具有良好的变形能力。所建立的有限元模型可较为准确地预测该节点在低周反复加载下的滞回行为。分析表明:随着轴压比提高,模型的延性降低;适当的增加钢梁翼缘和端板厚度可以提高节点的承载能力和延性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号