首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文针对非线性多阶段间歇过程在切换瞬间存在异步切换的问题,提出了一种鲁棒模糊预测异步切换控制方法.该方法将非线性多阶段间歇过程表示为同步子系统和异步子系统的等效闭环扩展Takagi-Sugeno模糊模型,在此基础上给出了确保每个批次指数稳定和每个阶段渐近稳定的,基于线性矩阵不等式的稳定性条件以及不同情况运行时间的计算方法.根据运行时间采用超前切换思想,避免异步切换情况的出现,保证系统的稳定运行.仿真案例表明所设计的控制器是有效的和可行的.  相似文献   

2.
This study is concerned with the asynchronous bumpless transfer (ABT) problem for a class of switched linear systems with external disturbances. Asynchronous switching or transfer implies that the transfers between sub-controllers and between sub-plants are asynchronous, and ABT is to ensure that there is no controller/plant-induced bumps or undesirable transients to the process. Specifically, the ABT process is first divided into two parts: robust performance bumpless transfer (RPBT) between sub-plants and robust control bumpless transfer (RCBT) between sub-controllers. Then, with a set of pre-given sub-plants under disturbances and corresponding sub-controllers, the RPBT and RCBT design schemes are, respectively, proposed. The designed RPBT and RCBT compensators are based on model reference adaptive sliding mode control such that the switched system can perform smooth transitions during the whole asynchronous switching process. Furthermore, by using average dwell time technique, the condition for guaranteeing the switched closed-loop system to be stable under ABT is developed. Finally, numerical simulations demonstrate the effectiveness of the proposed method.  相似文献   

3.
This paper proposes a tube-based method for the asynchronous observation problem of discrete-time switched linear systems in the presence of amplitude-bounded disturbances.Sufficient stability conditions of the nominal observer error system under mode-dependent persistent dwell-time(MPDT)switching are first established. Taking the disturbances into account, a novel asynchronous MPDT robust positive invariant(RPI) set and an asynchronous MPDT generalized RPI(GRPI)set are determined for the difference system between the nominal and disturbed observer error systems. Further, the global uniform asymptotical stability of the observer error system is established in the sense of converging to the asynchronous MPDT GRPI set, i.e., the cross section of the tube of the observer error system. Finally, the proposed results are validated on a space robot manipulator example.  相似文献   

4.
Asynchronous switching between switched system and associated filter or controller frequently occurs in several applications. In this article, the fault detection problem for a class of switched nonlinear systems with asynchronous switching is addressed. To model the switched system behaviour under asynchronous switching, two working modes are adopted to facilitate the studies on the issue. Then, based on average dwell time approach, a fault detection filter is developed via solving LMIs. Furthermore, it is proved that the fault detection problem under synchronous switching is only a particular case of our results for asynchronous switching. Finally, a numerical example is given to illustrate the effectiveness of proposed results.  相似文献   

5.
ABSTRACT

This study examines the finite time annular domain stability (FTADS) and stabilisation of a class of Itô stochastic impulsive systems with asynchronous switching controller. The asynchronous switching means that the controller switching does not accurately coincide with system switching in delayed time interval. The design of the controller depends on the observed jumping parameters, which cannot be precisely measured in real-time because of switching delay. Our results apply to cases where some subsystems of the switched systems are not necessarily stable under the influence of input delay. When the subsystem is stable in the synchronous switching interval and unstable in the asynchronous case, a compromise among the average impulsive interval, the upper bound of delay, and the decay/increasing rate of Lyapunov function in the synchronous/asynchronous switching interval respectively is given. By the mode-dependent parameter approach (MDPA) and allowing the increase of the impulses on all the switching times, the extended FTADS criteria for Itô stochastic impulsive systems in generally nonlinear setting are derived first. Then, we focus on the case when the system in both synchronous and asynchronous switching intervals are unstable. By reaching a tradeoff among average impulsive interval, the upper bound of delay, the magnitude of impulses and the difference between the increasing rate of Lyapunov function in the synchronous and asynchronous switching interval, new sufficient conditions for existence of the state feedback controller are also developed by MDPA. In addition, we consider the effect of different impulsive strengths (harmful and beneficial impulses) and obtained less conservative results because the Lyapunov function may be non-decreasing during switching interval. Moreover, we extend the conclusion from nonlinear stochastic impulsive switching systems to linear case. Finally, we present two examples to illustrate the effectiveness of the results obtained in this study.  相似文献   

6.
研究异步切换下时滞切换正系统的有限时间控制问题,即针对控制器切换滞后于子系统切换形成的异步现象,基于平均驻留时间切换方法对切换正系统开展有限时间镇定研究.首先,将每个正子系统运行的区间划分为子系统与控制器匹配和失配区间,并构造多余正Lyapunov-Krasovskii泛函;其次,基于有限时间稳定理论,实现平均驻留时间切换律及异步时滞切换正系统有限时间镇定控制器的联合设计,并给出连续时间和离散时间两种情形下系统有限时间镇定的充分条件;最后,通过两个仿真例子验证所提出方法的有效性.  相似文献   

7.
This paper is concerned with the positive stabilization for a class of switched systems under asynchronous switching signals. Because it inevitably takes some time to identify the active subsystem in the real systems and activate the corresponding controller, the switching of controllers lags behind that of subsystems, which arises the problem of the asynchronous switching. By analyzing the solution of dynamic systems, the mode‐dependent controllers are designed to guarantee the positivity and exponential stability for the resultant closed‐loop switched linear systems under asynchronous switching signals in continuous‐time and discrete‐time cases, respectively. Sufficient conditions for the existence of admissible state‐feedback controllers are developed, and the corresponding switching signals are designed. Furthermore, a synchronous switching phenomenon is discussed as a special case. Finally, numerical examples are given to illustrate the effectiveness of the results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
This paper addresses the stabilisation problem for a class of positive switched nonlinear systems under asynchronous switching, which means that the switches between the candidate controllers and the system modes are not synchronous. The continuous and discrete cases are considered respectively. Sufficient conditions are firstly provided for the existence of the asynchronous switching controllers to guarantee the closed-loop system to be positive and exponentially stable, and the corresponding admissible switching signals are presented. As a special case, the stabilisation results for positive switched linear systems under asynchronous switching are provided accordingly. Finally, two numerical examples are given to illustrate the effectiveness of the proposed methods.  相似文献   

9.
In smart industrial systems, in many cases, a fault can be captured as an event to represent the distinct nature of subsequent changes. Event-based fault diagnosis techniques are capable model-based methods for diagnosing faults from a sequence of observable events executed by the system under diagnosis. Most event-based diagnosis techniques rely on perfect observations of observable events. However, in practice, it is common to miss an observable event due to a problem in sensor-readings or communication/transmission channels. This paper develops a fault diagnosis tool, referred to as diagnoser, which can robustly detect, locate, and isolate occurred faults. The developed diagnoser is resilient against missed observations. A missed observation is detected from its successive sequence of events. Upon detecting a missed observation, the developed diagnoser automatically resets and then, asynchronously resumes the diagnosis process. This is achieved solely based on post-reset/activation observations and without interrupting the performance of the system under diagnosis. New concepts of asynchronous detectability and asynchronous diagnosability are introduced. It is shown that if asynchronous detectability and asynchronous diagnosability hold, the proposed diagnoser is capable of diagnosing occurred faults under imperfect observations. The proposed technique is applied to diagnose faults in a manufacturing process. Illustrative examples are provided to explain the details of the proposed algorithm. The result paves the way towards fostering resilient cyber-physical systems in Industry 4.0 context.   相似文献   

10.
Robust stabilisation and L2-gain analysis for a class of switched systems with actuator saturation are studied in this paper. The switching signal of the controllers lags behind that of the system modes, which leads to the asynchronous switching between the candidate controllers and the subsystems. By combining the piecewise Lyapunov function method with the convex hull technique, sufficient conditions in terms of LMIs for the solvability of the robust stabilisation and weighted L2-gain problems are presented respectively under the dwell time scheme. Finally, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed results.  相似文献   

11.
This paper studies the stability and stabilization problems for a class of switched stochastic systems under asynchronous switching. The asynchronous switching refers to that the switching of the candidate controllers does not coincide with the switching of system modes. Two situations are considered: (1) time-delayed switching situation, that is, the switching of the candidate controllers has a lag to the switching of the system modes; (2) mismatched switching situation, the switching of the candidate controllers does not match the switching of the system modes. Using average dwell time and Lyapunov-like function, sufficient conditions are established for stochastic input-to-state stability of the whole system. Also, the stabilizing controller design approach is proposed for switched stochastic linear systems. The minimal average dwell time and the controller gain are achieved. Finally, a numerical example is used to demonstrate the validity of the developed results.  相似文献   

12.
This paper investigates the state feedback stabilization problem for a class of positive switched systems with time-varying delays under asynchronous switching in the frameworks of continuous-time and discrete-time dynamics. The so-called asynchronous switching means that the switches between the candidate controllers and system modes are asynchronous. By constructing an appropriate co-positive type Lyapunov-Krasovskii functional and further allowing the functional to increase during the running time of active subsystems, sufficient conditions are provided to guarantee the exponential stability of the resulting closed-loop systems, and the corresponding controller gain matrices and admissible switching signals are presented. Finally, two illustrative examples are given to show the effectiveness of the proposed methods.  相似文献   

13.
This paper is concerned with the problem of input‐to‐state stability (ISS) for a class of switched nonlinear delay systems. The cases where the switching signal of the system and the switching signal of the corresponding controller are synchronous and asynchronous are both considered. To study two asynchronous switching signals in a unified framework, we adopt the technique of the merging switching signal. Based on a piecewise Lyapunov–Krasovskii functional method, some sufficient conditions are explicitly given to guarantee the ISS of the switched nonlinear delay system under the average dwell time scheme. Finally, a numerical example is presented to demonstrate the effectiveness of the proposed theory.  相似文献   

14.
This article is concerned with the problem of state feedback control for a class of discrete-time switched singular systems with time-varying state delays under asynchronous switching. The asynchronous switching considered here means that the switching instants of the candidate controllers lag behind those of the system modes. The concept of mismatched control rate is introduced. By using the multiple Lyapunov function approach and the average dwell time technique, a sufficient condition for the existence a stabilising switching law is first derived to guarantee the regularity, causality and exponential stability of the closed-loop system in the presence of asynchronous switching. The stabilising switching law is characterised by a upper bound on the mismatched control rate and a lower bound on the average dwell time. Then, the corresponding solvability condition for a set of mode-dependent state feedback controllers is established by using the linear matrix inequality (LMI) technique. Finally, a numerical example is provided to illustrate the effectiveness of the proposed method.  相似文献   

15.
This paper considers H controller design for a class of networked switched discrete systems under asynchronous switching. The sojourn probability information – the probability of the switched systems staying in each subsystem – is first used to rebuild the networked switched systems. Also, a time-varying lag, depending on both the network-induced delays and switching signals, is taken into consideration between the switching instants of the controllers and systems model. By considering both sojourn probability information and asynchronous switching, a new kind of networked switched system model is proposed, wherein a set of random variables are proposed to describe the sojourn probabilities of the subsystems. Then, stability analysis and H performance analysis under asynchronous switching are derived. It should be noted that the system performance depends not only on the time-varying lag, but also on the sojourn probabilities. Finally, an example is given to illustrate the effectiveness of the proposed approach.  相似文献   

16.
为了克服扰动与执行器故障对控制系统的影响,使系统具有抗干扰性和可靠性,针对一类不确定非线性切换系统,研究了在任意切换规则下鲁棒H∞可靠控制问题.首先,系统所有矩阵同时含有参数不确定性,并且系统也存在未知非线性扰动.当执行器存在故障时,基于线性矩阵不等式技术以及公共李亚普诺夫函数方法得到鲁棒H∞可靠控制器,使切换系统在任意切换律下全局二次稳定并且满足H∞性能指标.最后,通过求解凸优化问题得到了鲁棒H∞最优可靠控制器.仿真结果表明控制器在任意切换规则下是可行和有效的.  相似文献   

17.
In this paper, the problem of dynamic output-feedback control synthesis is addressed for discrete-time switched linear systems under asynchronous switching. The proposed hybrid controller consists of a standard dynamic output-feedback switching control law and an impulsive reset law induced by controller state jumps. Using the average dwell time technique incorporating with multiple quadratic Lyapunov functions, the switching control synthesis conditions for asymptotic stability with guaranteed weighted ?2-gain performance are derived as a set of linear matrix inequalities (LMIs). The proposed hybrid synthesis scheme advances existing design methods for output-feedback asynchronous switching control of switched linear systems in two important aspects: LMI formulation of the synthesis problem; and arbitrary order of the controller state. A numerical example is used to illustrate the effectiveness and advantages of the proposed design technique.  相似文献   

18.
针对一类具有任意相对阶且带有部分非输入到状态稳定逆动态的非线性切换系统, 提出一种动态事件触 发漏斗跟踪控制方案. 首先, 引入一个虚拟输出将任意相对阶的非线性切换系统转换为相对阶为一的非线性切换系 统. 其次, 设计各子系统的事件触发漏斗控制器和切换的动态事件触发机制, 解决候选事件触发漏斗控制器和子系 统之间的异步切换问题, 所提方案消除已有文献中为所有子系统设计共同控制器带来的保守性. 在一类具有平均驻 留时间切换信号的作用下, 保证切换闭环系统的所有信号都是有界的, 且跟踪误差一直在预设的漏斗内演化, 并排 除采样中的奇诺现象. 最后, 一个仿真例子验证方案的实用性和有效性.  相似文献   

19.
This paper deals with the exponential stability and asynchronous stabilization of continuous‐time switched systems. By delicately constructed piecewise Lyapunov‐like functions and the minimum dwell time switching method, exponential stability of the switched systems with stable or unstable subsystems is obtained. Based on the result of the stability, the problem of controller design of the switched systems under asynchronous switching is also solved, and the delay that causes asynchronous phenomena can be unbounded. The stability results and control laws of the switched systems are formulated in the form of linear matrix inequalities that are numerically feasible. Finally, two illustrative numerical examples are presented to show the effectiveness of the obtained theoretical results.  相似文献   

20.
This summary addresses the input‐to‐state stability (ISS) and integral ISS (iISS) problems of impulsive switched nonlinear time‐delay systems (ISNTDSs) under two asynchronous switching effects. In our investigated systems, impulsive instants and switching instants do not necessarily coincide with each other. Meanwhile, systems switching signals are not simultaneous with the corresponding controllers switching signals, which will induce instability seriously, and cause many difficulties and challenges. By utilizing methods of Lyapunov‐Krasovskii and Lyapunov‐Razumikhin, mode‐dependent average dwell time approach, and mode‐dependent average impulsive interval technique, some stability criteria are presented for ISNTDSs under two asynchronous switching effects. Our proposed results improve the related existing results on the same topic by removing some restrictive conditions and cover some existing results as special cases. Finally, some simulation examples are presented to illustrate the effectiveness and advantages of our results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号