首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, a laser cladding process was developed to deposit dense and well-adhered titanium single tracks on the surface of Ti6Al4V alloy with a compositional and microstructural gradient. CuO doped, freeze-dried anatase powder was specially formulated for this process. The addition of CuO resulted in stable melt pool with low viscosity, low surface tension and enhanced wettability with the substrate. Continuous titanium oxide single tracks were formed with a cross-sectional profile that was advantageous for coating deposition by means of multiple overlapping scan tracks. Rapid heating and cooling associated with laser cladding produced unique solidified microstructures with a compositional gradient. No structurally critical fractures were observed in the graded oxide layers, or at the coating/substrate interfaces. Furthermore, a transition zone of oxide/metal mixture was observed at the interface, increasing the effective bonding area between the coating and the substrate.  相似文献   

2.
TiBx coatings were deposited on Ti6Al4V and Si (100) wafer substrates by D.C. magnetron sputtering with various target-to-substrate distances (T.S. distances) from 50 mm to 200 mm. The influence of T.S. distance on the microstructure, hardness and adhesion strength of TiBx coatings and Ti6Al4V substrate system was investigated. Results showed that the microstructure of TiBx coatings transformed from dense to fibre columnar grain with the increase in T.S. distance, whilst the hardness decreased from 20.9 GPa to 9.4 GPa. The Rockwell-C indentation adhesion strength grade was also improved from HF6 to HF1. An adhesion evaluation factor G, which is related to the mechanical properties and the microstructure of TiBx coating, is proposed based on the test results. The adhesion strength increased with G, which corresponded well with the results of indentation test. The high-speed rubbing test with a sliding speed of 300 m/s was performed to check the Al-adhesion resistance of the TiBx coating against Al–hBN seal coating.  相似文献   

3.
《Ceramics International》2019,45(16):19864-19878
Structural and industrial demands for lightweight engineering materials with exclusive properties have been rising in recent decades for automobile and aerospace applications. This has encouraged various innovations in materials engineering communities to synthesis advanced engineering materials using improved fabrication technique such as spark plasma sintering (SPS). In this study, titanium-based nanocomposites were synthesized by reinforcing Ti6Al4V reinforced with (0.5, 1.0 and 1.5 wt%) multiwall carbon nanotubes (MWCNT) powders. The starting powders were blended by shift-speed ball milling. Thereafter, SPS technique was used to consolidate the admixed powders by employing the following sintering parameters; sintering rate, 100 °C/min, compressive pressure, 50 MPa, holding time, 10 min and sintering temperatures of 900–1100 °C. The influence of MWCNT additions on the sinterability, densification behaviours and microhardness of the sintered nanocomposites were investigated. The results revealed that the densification of the sintered nanocomposites was in the range of 97.51–99.61% which decreased with an increase in concentration of the MWCNT. Meanwhile, the densification and microhardness improved tremendously with an increase in sintering temperatures.  相似文献   

4.
The purpose of this article is to present energetic properties of surface Ti6Al4V titanium as well as surface EN-AW-2017A(PA6) aluminum alloy layers. Values of surface free energy after selected mechanical operations and ozonation were compared. In addition, the influence of different values of ozone concentration on surface layer energetic activation was analyzed. Dispersive and polar components of surface free energy were of particular concern. Comparative evaluation of shearing strength of Ti6Al4V titanium and EN-AW-2017A(PA6) aluminum alloy single-lap adhesive bonded joints were presented. Results can be used as pro-ecological methods of titanium and aluminum alloys preparing for applications where adhesive phenomenon is important.  相似文献   

5.
The micromachining of complex three-dimensional microstructures (bulk micromachining) on metals can be applied to fabricate many novel devices for micro electromechanical system (MEMS), which will greatly benefit the development of MEMS. In this paper, a new electrochemical micromachining method named the confined etchant layer technique (CELT) was explored on the micromachining of the titanium alloy. Micro-scale trapezoidal slots were replicated on titanium alloy by using a mold with the corresponding negative microstructures (trapezoidal teeth). The machining resolution reached 0.503 μm. The electrochemical mechanisms involved in the process are analyzed and the parameters that influenced the machining resolution are discussed. A. Attia is on leave from Physical Chemistry Department, National Research Centre, El-Tahrir St., Dokki, Cairo, Egypt.  相似文献   

6.
The biocompatibility and mechanical integrity of Ti and Ti6Al4V alloy can be affected by corrosion processes. This paper presents studies on the stability of anodic oxide films on Ti6Al4V and Ti in chloride medium. The oxides were grown potentiodynamically up to 8.0 V in the phosphate buffer saline (PBS) solution (pH 6.8) at 25 and 37 °C. The morphology of the obtained anodic oxides and the type of corrosion that occurred were analyzed by SEM–EDS. The Ti6Al4V alloy presented less corrosion resistance than pure Ti. Elemental analyses showed that the decrease of the alloy corrosion resistance is due mainly to the corrosion of Al.  相似文献   

7.
Various machine components produced from titanium alloys used in various industries are subject to a combination of electrochemical and mechanical effects. The science of surface transformations resulting from the interaction of mechanical loading and chemical reactions that occur between elements of a tribosystem exposed to corrosive environments is described as tribocorrosion. This research focuses on the tribocorrosion behaviour of Ti6Al4V alloys after coated by using closed field unbalance magnetron sputtering (CFUBMS). The structural analyses of the coatings were performed using Raman spectroscopy and scanning electron microscopy (SEM). Tribocorrosion experiments were performed in a pin-on-disc tribotester under electrochemical polarisation in NaCl 1 wt.% solution. This study shows that the Ti-DLC coating is protecting the Ti6Al4V alloy and having good performance in corrosion and tribocorrosion conditions. The OCP values for Ti6Al4V substrate and Ti-DLC protective coatings during tribocorrosion tests were measured as −560 V and −330 V, respectively. These results showed that Ti-DLC protective coating on Ti6Al4V substrates increased the tribocorrosion resistance by acting as a barrier layer.  相似文献   

8.
Carbon and Mo-coated Ti6Al4V alloy diffusion couple was used to investigate Mo-modified diffusion reaction between carbon and Ti6Al4V. Randomly dispersed carbide particles were observed in Ti6Al4V alloy after 900℃ exposure. Carbide particles were found evolving from defective TiCx (x<1) to mixture of TiCx and defective Ti3AlC2. Although Mo atoms were hardly detected in particles, their dilution effect along Ti alloy grain boundary (GB) is beneficial to carbon diffusion and carbide formation along GB. Based on high-resolution TEM (HRTEM) imaging, high density stacking faults (SFs) and nanotwins were observed in TiCx particles which explain Raman activation of defects in TiC. Formation of SFs and nanotwins in TiCx is attributed to carbon vacancies, which inversely promotes incoherent twin boundary (ITB) formation. Transformation from TiCx to Ti3AlC2 is considered driven by Al indiffusion along ITBs. Intergrowth of TiCx in defective Ti3AlC2 is the compromise to low Al concentration in Ti6Al4V.  相似文献   

9.
利用微弧氧化技术在Ti6Al4V钛合金表面制备出蓝色微弧氧化膜。对微弧氧化膜的微观形貌和元素组成进行了分析,并对微弧氧化膜的显微硬度进行了测试。结果表明:微弧氧化膜表面光整,呈均匀深蓝色,其主要由Ti、Mn、O和C四种元素组成,还含有少量的V、Al和Si元素;微弧氧化膜的表面粗糙度约为0.159μm,与钛合金的表面粗糙度相近;微弧氧化膜的显微硬度为5 437.4 MPa,显著高于钛合金的显微硬度。  相似文献   

10.
电流密度对Ti 6Al 4V微弧氧化膜形貌和性能的影响   总被引:1,自引:0,他引:1  
采用NaAlO2-Na3PO4-NaF溶液体系,研究了电流密度对Ti 6Al 4V合金微弧氧化膜厚度、生长速率、表面形貌、粗糙度、组成相以及氧化膜耐蚀性、耐磨性等影响.结果表明,(1)在试验的电流密度范围内,氧化膜的厚度随电流密度的增大呈线性增大,但氧化膜的粗糙度却几乎呈指数增大,表面质量变差;(2)在质量分数为3.5%的NaCl溶液中显示了比Ti 6Al 4V钛合金更好的耐蚀性;(3)在干摩擦条件下,氧化膜的摩擦系数高于基体的,氧化膜的磨损机制为脆性断裂.  相似文献   

11.
Hydroxyapatite coatings on Ti6Al4V substrates were prepared by a sol–gel method, and characterized by X-ray diffraction, scanning electron microscopy, and infrared reflection spectroscopy. The coatings obtained at 500°C in air had a hydroxyapatite phase, some of which was carbonated hydroxyapatite, and had a dense and smooth morphology. When the coatings were treated in a simulated body fluid, the coatings had an increase in large hydroxyapatite grains, and a rough and porous morphology. The adhesive strength of the coatings was more than 14 MPa.  相似文献   

12.
The Armstrong Process® developed by Cristal US, Inc./International Titanium Powder, is an innovative, low-cost technology for producing Ti and Ti alloy powders in a one-step, continuous process. In this work, Armstrong Ti-6Al-4V powders were characterized and the cold compaction behavior of the powders were investigated in detail. As-received as well as milled powders were uniaxially die-pressed at designated pressures up to 690 MPa to form disk samples with different aspect ratios. Samples with high aspect ratio exhibited non-uniform density along the pressing axis and the density distribution was consistent with the result predicted by finite element analysis. The model developed from the linear regression analysis on the experimental density data can be used to predict density of compacts with different aspect ratios. In the studied pressure range, an empirical powder compaction equation was applied to linearize the green density — pressure relationship. Cold compaction parameters were obtained for the as-received and milled Armstrong Ti-6Al-4V powders.  相似文献   

13.
The paper is aimed at detecting the corrosion susceptibility (generated by the potential gradients, due to the pH changes) of implant materials Ti-5Al-4V and Ti-6Al-4Fe alloys exposed in extra-cellular fluids for long term (10 000 exposure hours) in comparison with pure titanium. The titanium and its ternary alloys exhibited spontaneous passivity in Ringer’s solutions of pH=6.98, 4.35 and 2.5, simulating the real situations that can arise in surgical applications. Potential gradients determined in presumptive extreme pH conditions indicate that there is no probability for local corrosion. Impedance spectra were fitted with one time constant equivalent circuit, typically for protective, compact oxide film. The fitting parameters indicate long-term stability of the passive layers in surgical implant conditions. Atomic force microscopy (AFM) and spectral infrared (IR) data are important arguments in supporting the conclusion that titanium and its ternary alloys have a very good corrosion resistance in long-term functional conditions.  相似文献   

14.
Open-circuit potential, polarization and electrochemical impedance spectroscopy (EIS) measurements were used to investigate the corrosion behaviour of Ti–6Al–4V alloy in H2SO4 and HCl solutions. The corrosion rate of the alloy was found to increase with increasing acid concentration. The corrosion behaviour of the alloy was compared to that of pure titanium in both acids. The results showed that the alloy is more corrosion resistant than pure titanium in the investigated solutions. The apparent activation energies of the corrosion process for titanium are lower than those of the alloy in the same solutions, which reflects the higher corrosion resistance of the alloy.  相似文献   

15.
The corrosion properties of Ti–6Al–4V and laser surface melted (LSM) Ti–6Al–4V samples were investigated in 0.05 M H2SO4/0.05 M NaCl solution. Laser surface treatment was found to increase the corrosion potential and decrease the corrosion rates of the alloy. The current–potential profile of the LSM was found to be generally noisy below 0.5 V, indicating an unstable surface, which undergoes continuous dissolution and repassivation. However, above 0.5 V the LSM specimen exhibited higher corrosion current compared to the untreated alloy. Inductively coupled plasma (ICP) analysis of metals in solution was carried out after controlled potential electrolysis. Generally, the aluminium percentage was found to be the highest in solution compared to titanium and vanadium. The aluminium percentage in solution reached 94% compared to titanium and vanadium upon polarization in the passive region at 1.01 V. SEM showed that some local and shallow pitting to occur in both the untreated and LSM alloy. EDS results showed that aluminium composition of the electrolysed alloy surface is lower than the original material composition, and decreased from 6% in the original alloy to 0.18% after two hours of electrolysis of the LSM specimen.  相似文献   

16.
The structural and bonding properties of Ti-6Al-4V adherends, prepared by chromic acid anodization (CAA), were studied as a function of exposure in high-temperature environments such as vacuum, air, boiling and pressurized water, and steam. Subsequent to the environmental exposure, bonds were produced and the adhesive tensile strengths measured. Long-term exposure to high temperature, dry environments did not cause structural changes to the adherend oxide but did result in poor bond strength. The failure mode in these cases was within the oxide, which was apparently weakened by the exposure. The water-and steam-exposed oxides underwent a transition from amorphous to crystalline TiO2 (with an accompanying change in oxide morphology); however, bond strength was maintained for moderate exposures at T ≤ 250°C. For exposure at T = 300°C, the bond strength was degraded severely. The latter result can be explained by a lack of porosity in the transformed oxide. SEM and XPS measurements were made on debonded surfaces to determine the loci of failure.  相似文献   

17.
《Ceramics International》2023,49(3):4168-4176
Titanium matrix composites (TMCs) with ceramic particles exhibit higher hardness, strength, and wear resistance than those of titanium alloys. Wire arc additive manufacturing (WAAM) is a promising method for fabricating large TMC components owing to its high deposition rate and low production cost. In this study, a WAAM process using a flux-cored wire was developed to fabricate components of TiB plus TiC reinforced Ti6Al4V matrix composites. The network microstructure of the reinforcement was obtained through in-situ reactions induced by the B4C and C powders in the flux core. The formation mechanism of the network microstructure was discussed. The effect of the reinforcement fraction (5 and 10 wt%, hereinafter called 5 and 10 wt% samples) on the microstructure and wear resistance of the samples along the deposition direction were investigated. The results showed that the refined net-basket-dominated (α+β)-Ti matrix and stable network microstructure were formed in middle region owing to the introduction of the reinforcement. The microhardness increased by 23% and 35% when the reinforcement fractions were 5 and 10 wt%, respectively. The 10 wt% sample showed reduced wear performance because more cracks appeared as the result of the decreased ductility.  相似文献   

18.
Ti-6Al-4V合金表面激光熔覆NiCrBSi+5%BN涂层组织和性能   总被引:1,自引:0,他引:1  
Ti-6Al-4V合金具有比强度高、耐蚀性能好等优点,在航天、航空、石油和化工等新科技工业部门广泛使用。在表面激光熔覆金属-陶瓷复合涂层是改善钛合金性能的重要方式,利用XRD、SEM和EDS等分析手段对NiCrBSi+5%(质量分数)BN熔覆层的微观组织进行分析。利用HV-1000型显微维氏硬度计测试激光熔覆试样的硬度。  相似文献   

19.
《Ceramics International》2022,48(5):5983-5994
Tantalum oxide film has become an investigation focus for surface modification materials in the biomedical field owing to its outstanding biocompatibility, anti-corrosion, and anti-wear performances. However, tantalum oxide films exhibit poor adhesion because of the mismatch between the properties of the film and the substrate. In this study, a novel multilayer tantalum oxide coating of TamOn/TamOn-TiO2/TiO2/Ti (code M-TamOn) was deposited on Ti6Al4V by magnetron sputtering with TamOn single-layer coating as control. The purpose of this work is to evaluate the influence of the introduced TamOn-TiO2/TiO2/Ti multi-interlayer on the microstructure, adhesive, mechanical, and anti-corrosion properties of reactive sputtered tantalum oxide coatings. The outcomes show that the TamOn-TiO2/TiO2/Ti intermediate layer improves the bonding strength between the TamOn layer and Ti6Al4V matrix from 17.83 N to over 50 N and enables the TamOn coating to have an increased H/E and H3/E2 ratio, decreased friction coefficient and wear rate, raised potential, and reduced corrosion current density. The improved properties of the multilayer system are attributed to the positive effects of the inserted multiple interlayers in reducing the residual stress in the coating, coupling the mechanical performance between the layer and the substrate, blocking the continuous growth of penetrating defects in a film with columnar structure. These experimental results provide a workable route for improving the properties of the tantalum oxide coating on Ti6Al4V alloy for medical applications.  相似文献   

20.
The adsorption of tropocollagen type I on titanium and Ti6Al4V has been investigated using physicochemical (zeta potential measurements), biochemical (ELISA), and imaging methods (SEM, AFM). Zeta potential measurements on both materials showed isolectric points in the pHiep range 4.3-4.8 if the metal surfaces were covered with amorphous oxide layers. Adsorption of both collagen molecules and fibrillar collagen led to a shift of about 0.5 pH units towards the alkaline region. From ELISA-based results it can be concluded that in the investigated concentration range of 0.01-0.5 mg/ml, the adsorption of collagen molecules leads to the formation of a rather uniform covering. The influence of pH and ionic strength on the adsorption behavior has been investigated. A model of the competitive adsorption of both tropocollagen molecules and in vitro reconstituted fibrils is presented. Based on this model, two methods are proposed for the improved adsorption of collagen fibrils: (i) adsorption from solutions that are essentially free from tropocollagen and oligomeric species; and (ii) use of already adsorbed tropocollagen as nucleation sites for further fibrillar growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号