首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
A set of vertices W is a resolving set of a graph G if every two vertices of G have distinct representations of distances with respect to the set W. The number of vertices in a smallest resolving set is called the metric dimension. This invariant has extensive applications in robotics, since the metric dimension can represent the minimum number of landmarks, which uniquely determine the position of a robot moving in a graph space. Finding the metric dimension of a graph is a non-deterministic polynomial-time hard problem. We present exact values of the metric dimension of several networks, which can be obtained as categorial products of graphs.  相似文献   

3.
A vertex v of a connected graph G distinguishes a pair u, w of vertices of G if d(v, u)≠d(v, w), where d(·,·) denotes the length of a shortest path between two vertices in G. A k-partition Π={S 1, S 2, …, S k } of the vertex set of G is said to be a locatic partition if for every pair of distinct vertices v and w of G, there exists a vertex sS i for all 1≤ik that distinguishes v and w. The cardinality of a largest locatic partition is called the locatic number of G. In this paper, we study the locatic number of paths, cycles and characterize all the connected graphs of order n having locatic number n, n?1 and n?2. Some realizable results are also given in this paper.  相似文献   

4.
《国际计算机数学杂志》2012,89(10):2026-2034
Let G be a connected graph with diameter diam(G). The radio number for G, denoted by rn(G), is the smallest integer k such that there exists a function f: V(G)→{0, 1, 2, …, k} with the following satisfied for all vertices u and v:|f(u)?f(v)|≥diam (G)?d G (u, v)+1, where d G (u, v) is the distance between u and v in G. In this paper, we determine the radio number of ladder graphs.  相似文献   

5.
In a graph, a vertex is simplicial if its neighborhood is a clique. For an integer k≥1, a graph G=(VG,EG) is the k-simplicial power of a graph H=(VH,EH) (H a root graph of G) if VG is the set of all simplicial vertices of H, and for all distinct vertices x and y in VG, xyEG if and only if the distance in H between x and y is at most k. This concept generalizes k-leaf powers introduced by Nishimura, Ragde and Thilikos which were motivated by the search for underlying phylogenetic trees; k-leaf powers are the k-simplicial powers of trees. Recently, a lot of work has been done on k-leaf powers and their roots as well as on their variants phylogenetic roots and Steiner roots. For k≤5, k-leaf powers can be recognized in linear time, and for k≤4, structural characterizations are known. For k≥6, the recognition and characterization problems of k-leaf powers are still open. Since trees and block graphs (i.e., connected graphs whose blocks are cliques) have very similar metric properties, it is natural to study k-simplicial powers of block graphs. We show that leaf powers of trees and simplicial powers of block graphs are closely related, and we study simplicial powers of other graph classes containing all trees such as ptolemaic graphs and strongly chordal graphs.  相似文献   

6.
For a positive integer k, a graph G is k-ordered hamiltonian if for every ordered sequence of k vertices there is a hamiltonian cycle that encounters the vertices of the sequence in the given order. In this paper, we show that if G is a ⌊3k/2⌋-connected graph of order n?100k, and d(u)+d(v)?n for any two vertices u and v with d(u,v)=2, then G is k-ordered hamiltonian. Our result implies the theorem of G. Chen et al. [Ars Combin. 70 (2004) 245-255] [1], which requires the degree sum condition for all pairs of non-adjacent vertices, not just those distance 2 apart.  相似文献   

7.
《国际计算机数学杂志》2012,89(9):1918-1935
Let G=(V, E) be a simple connected graph and k be a fixed positive integer. A vertex w is said to be a k-neighbourhood-cover (kNC) of an edge (u, v) if d(u, w)≤k and d(v, w)≤k. A set C ? V is called a kNC set if every edge in E is kNC by some vertices of C. The decision problem associated with this problem is NP-complete for general graphs and it remains NP-complete for chordal graphs. In this article, we design an O(n) time algorithm to solve minimum kNC problem on interval graphs by using a data structure called interval tree.  相似文献   

8.
The disk dimension of a planar graph G is the least number k for which G embeds in the plane minus k open disks, with every vertex on the boundary of some disk. Useful properties of graphs with a given disk dimension are derived, leading to an algorithm to obtain an outerplanar subgraph of a graph with disk dimension k by removing at most 2k−2 vertices. This reduction is used to obtain linear-time exact and approximation algorithms on graphs with fixed disk dimension. In particular, a linear-time approximation algorithm is presented for the pathwidth problem.  相似文献   

9.
Let m, j and k be positive integers. An m-circular-L(j, k)-labelling of a graph G is an assignment f from { 0, 1,?…?, m?1} to the vertices of G such that, for any two vertices u and v, |f(u)?f(v)|mj if uvE(G), and |f(u)?f(v)|mk if dG(u, v)=2, where |a|m=min{a, m?a}. The minimum m such that G has an m-circular-L(j, k)-labelling is called the circular-L(j, k)-labelling number of G. This paper determines the circular-L(2, 1)-labelling numbers of the direct product of a path and a complete graph and of the Cartesian product of a path and a cycle.  相似文献   

10.
In 2005, Rahman and Kaykobad proved that if G is a connected graph of order n such that d(x)+d(y)+d(x,y)n+1 for each pair x, y of distinct nonadjacent vertices in G, where d(x,y) is the length of a shortest path between x and y in G, then G has a Hamiltonian path [Inform. Process. Lett. 94 (2005) 37–41]. In 2006 Li proved that if G is a 2-connected graph of order n3 such that d(x)+d(y)+d(x,y)n+2 for each pair x,y of nonadjacent vertices in G, then G is pancyclic or G=Kn/2,n/2 where n4 is an even integer [Inform. Process. Lett. 98 (2006) 159–161]. In this work we prove that if G is a 2-connected graph of order n such that d(x)+d(y)+d(x,y)n+1 for all pairs x, y of distinct nonadjacent vertices in G, then G is pancyclic or G belongs to one of four specified families of graphs.  相似文献   

11.
In this paper we study collective additive tree spanners for special families of graphs including planar graphs, graphs with bounded genus, graphs with bounded tree-width, graphs with bounded clique-width, and graphs with bounded chordality. We say that a graph G=(V,E) admits a system of μ collective additive tree r -spanners if there is a system $\mathcal{T}(G)In this paper we study collective additive tree spanners for special families of graphs including planar graphs, graphs with bounded genus, graphs with bounded tree-width, graphs with bounded clique-width, and graphs with bounded chordality. We say that a graph G=(V,E) admits a system of μ collective additive tree r -spanners if there is a system T(G)\mathcal{T}(G) of at most μ spanning trees of G such that for any two vertices x,y of G a spanning tree T ? T(G)T\in\mathcal{T}(G) exists such that d T (x,y)≤d G (x,y)+r. We describe a general method for constructing a “small” system of collective additive tree r-spanners with small values of r for “well” decomposable graphs, and as a byproduct show (among other results) that any weighted planar graph admits a system of O(?n)O(\sqrt{n}) collective additive tree 0-spanners, any weighted graph with tree-width at most k−1 admits a system of klog 2 n collective additive tree 0-spanners, any weighted graph with clique-width at most k admits a system of klog 3/2 n collective additive tree (2w)(2\mathsf{w}) -spanners, and any weighted graph with size of largest induced cycle at most c admits a system of log 2 n collective additive tree (2?c/2?w)(2\lfloor c/2\rfloor\mathsf{w}) -spanners and a system of 4log 2 n collective additive tree (2(?c/3?+1)w)(2(\lfloor c/3\rfloor +1)\mathsf {w}) -spanners (here, w\mathsf{w} is the maximum edge weight in G). The latter result is refined for weighted weakly chordal graphs: any such graph admits a system of 4log 2 n collective additive tree (2w)(2\mathsf{w}) -spanners. Furthermore, based on this collection of trees, we derive a compact and efficient routing scheme for those families of graphs.  相似文献   

12.
A set S of vertices of a graph G is a dominating set for G if every vertex of G is adjacent to at least one vertex of S. The domination number γ(G), of G, is the minimum cardinality of a dominating set in G. Moreover, if the maximum degree of G is Δ, then for every positive integer k≤Δ, the set S is a k-dominating set in G if every vertex outside of S is adjacent to at least k vertices of S. The k-domination number of G, denoted by γ k (G), is the minimum cardinality of a k-dominating set in G. A map f: V→<texlscub>0, 1, 2</texlscub>is a Roman dominating function for G if for every vertex v with f(v)=0, there exists a vertex uN(v) such that f(u)=2. The weight of a Roman dominating function is f(V)=∑ uV f(u). The Roman domination number γR(G), of G, is the minimum weight of a Roman dominating function on G. In this paper, we obtain that for any two graphs G and H, the k-domination number of the Cartesian product of G and H is bounded below by γ(G k (H)/2. Also, we obtain that the domination number of Cartesian product of G and H is bounded below by γ(GR(H)/3.  相似文献   

13.
The distance-two labelling problem of graphs was proposed by Griggs and Roberts in 1988, and it is a variation of the frequency assignment problem introduced by Hale in 1980. An L(2, 1)-labelling of a graph G is an assignment of non-negative integers to the vertices of G such that vertices at distance two receive different numbers and adjacent vertices receive different and non-consecutive integers. The L(2, 1)-labelling number of G, denoted by λ(G), is the smallest integer k such that G has a L(2, 1)-labelling in which no label is greater than k.

In this work, we study the L(2, 1)-labelling problem on block graphs. We find upper bounds for λ(G) in the general case and reduce those bounds for some particular cases of block graphs with maximum clique size equal to 3.  相似文献   

14.
The median (antimedian) set of a profile π=(u 1,…,u k ) of vertices of a graph G is the set of vertices x that minimize (maximize) the remoteness ∑ i d(x,u i ). Two algorithms for median graphs G of complexity O(n idim(G)) are designed, where n is the order and idim(G) the isometric dimension of G. The first algorithm computes median sets of profiles and will be in practice often faster than the other algorithm which in addition computes antimedian sets and remoteness functions and works in all partial cubes.  相似文献   

15.
《国际计算机数学杂志》2012,89(17):3570-3576
A graph G of size q is odd graceful, if there is an injection φ from V(G) to {0, 1, 2, …, 2q?1} such that, when each edge xy is assigned the label or weight |f(x)?f(y)|, the resulting edge labels are {1, 3, 5, …, 2q?1}. This definition was introduced in 1991 by Gnanajothi [3], who proved that the graphs obtained by joining a single pendant edge to each vertex of C n are odd graceful, if n is even. In this paper, we generalize Gnanajothi's result on cycles by showing that the graphs obtained by joining m pendant edges to each vertex of C n are odd graceful if n is even. We also prove that the subdivision of ladders S(L n ) (the graphs obtained by subdividing every edge of L n exactly once) is odd graceful.  相似文献   

16.
《国际计算机数学杂志》2012,89(9):1897-1910
In this paper we obtain information about the hyperbolicity constant of cubic graphs. They are a very interesting class of graphs with many applications; furthermore, they are also very important in the study of Gromov hyperbolicity, since for any graph G with bounded maximum degree there exists a cubic graph G* such that G is hyperbolic if and only if G* is hyperbolic. We find some characterizations for the cubic graphs which have small hyperbolicity constants, i.e. the graphs which are like trees (in the Gromov sense). Besides, we obtain bounds for the hyperbolicity constant of the complement graph of a cubic graph; our main result of this kind says that for any finite cubic graph G which is not isomorphic either to K4 or to K3, 3, the inequalities 5k/4≤δ (?)≤3k/2 hold, if k is the length of every edge in G.  相似文献   

17.
《国际计算机数学杂志》2012,89(10):2212-2225
A Hamiltonian cycle C=? u 1, u 2, …, u n(G), u 1 ? with n(G)=number of vertices of G, is a cycle C(u 1; G), where u 1 is the beginning and ending vertex and u i is the ith vertex in C and u i u j for any ij, 1≤i, jn(G). A set of Hamiltonian cycles {C 1, C 2, …, C k } of G is mutually independent if any two different Hamiltonian cycles are independent. For a hamiltonian graph G, the mutually independent Hamiltonianicity number of G, denoted by h(G), is the maximum integer k such that for any vertex u of G there exist k-mutually independent Hamiltonian cycles of G starting at u. In this paper, we prove that h(B n )=n?1 if n≥4, where B n is the n-dimensional bubble-sort graph.  相似文献   

18.
《国际计算机数学杂志》2012,89(8):1680-1691
Let G be a graph with vertex set V(G). Let n, k, d be non-negative integers such that n+2k+d≤|V(G)|?2 and |V(G)|?n?d are even. A matching which saturates exactly |V(G)|?d vertices is called a defect-d matching of G. If when deleting any n vertices the remaining subgraph contains a matching of k edges and every k-matching can be extended to a defect-d matching, then G is said to be an (n, k, d)-graph. We present an algorithm to determine (0, 1, d)-graphs with d constraints. Moreover, we solve the problem of augmenting a bipartite graph G=(B, W) to be a (0, 1, d)-graph by adding fewest edges, where d=∥B|?|W∥. The latter problem is applicable to the job assignment problem, where the number of jobs does not equal the number of persons.  相似文献   

19.
Let G(k, n) be the set of simple graphs (i.e. without multiple edges or loops) that have n vertices and the minimum degree of vertices is k. The Randi? index of a graph G is: , where δu is the degree of vertex u and the summation extends over all edges (uv) of G. Using linear programming, we find the extremal graphs or give good bounds for this index when the number nk of vertices of degree kis n?k+t, for 0tk and kn/2. We also prove that for nkn?k, (kn/2) the minimum value of the Randi? index is attained for the graph .  相似文献   

20.
The (k−1)-fault diameter Dk(G) of a k-connected graph G is the maximum diameter of an induced subgraph by deleting at most k−1 vertices from G. This paper considers the fault diameter of the product graph G1G2 of two graphs G1 and G2 and proves that Dk1+k2(G1G2)?Dk1(G1)+Dk2(G2)+1 if G1 is k1-connected and G2 is k2-connected. This generalizes some known results such as Bani? and ?erovnik [I. Bani?, J. ?erovnik, Fault-diameter of Cartesian graph bundles, Inform. Process. Lett. 100 (2) (2006) 47-51].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号