首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
结构胶胶接接头耐久性的研究进展   总被引:1,自引:0,他引:1  
结构胶是胶黏剂中具有高强度、耐高温、高耐久特性的一类胶黏剂的总称,主要用于部件中承受载荷的胶接连接。胶接接头的耐久性能是结构胶应用中的一个重要指标。主要从影响胶接接头耐久性的内在因素和外在因素以及实验室研究方法对结构胶胶接接头耐久性的研究进展进行综述。  相似文献   

2.
Strain-gauge methods show how the scarfing of outer adherends influence the thresholds for microcrack initiation and flaw propagation in an adhesive-bonded, double-lap joint. There is an optimal value for the angle of the free ends that gives the sample, undergoing shear obtained by loading in direct traction, a very good mechanical strength.

A simplified solution can be calculated from the hypothesis of pure traction of the adherends, which is comparable with the microstrain profile. A numerical method is also obtained for quasi-linear evaluation of the shear modulus of the adhesive joint.  相似文献   

3.
Novel, environmentally friendly waterborne coatings were obtained from the filmification of nanostructured latex particles reinforced with inorganic nanotubes. The latex used to form the coatings consists of core-shell particles with a shell functionalized with different amounts of acrylic acid (AA). This external polymer layer was doped, in some cases, with TiO2 nanotubes at three different concentrations: 100, 500 and 1000 ppm. The composite particles were synthesized in two steps by semi-continuous emulsion polymerization at 75°C. A series of films was prepared by employing core-shell particles with different sizes, core cross-linking and shell functionalization. The coatings obtained were characterized by infrared spectroscopy (FTIR), tapping mode atomic force microscopy (TM-AFM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetrical analysis (TGA). Drying rates and tests were also performed to further evaluate these films. It was observed that the addition of small amounts of TiO2 nanotubes contributes to improve the application properties, mainly adhesion to metallic substrates and water impermeability. The resistance to thermal degradation was also strongly increased, as showed by the DSC and TGA analyses.  相似文献   

4.
Preparation of TiO2/SiO2 multilayer flakes and their application to decorative powders were investigated. In contrast to conventional products prepared through the multicoating of core platelets, the coreless TiO2/SiO2 multilayer flakes were prepared by detaching multilayer films from their substrates. These flakes exhibited structural colors, when the optical path length of both the TiO2 and SiO2 layers are adjusted to be one fourth of the wavelength of visible light. A multicoating of more than five layers resulted in the propagation of cracks, which prevented the preparation of thick flakes. Paint films fabricated using the multilayer flakes and acrylic resins showed reflectance spectra that were comparable with those obtained for multicoatings on substrates.  相似文献   

5.
In this study, TiO2, ZnO, TiO2/ZnO (Ti/Zn), and TiO2/ZnO/Sep (Ti/Zn/Sep) catalysts have been synthesized using sol–gel and chemical precipitation method. Their photocatalytic performances have been compared using Flumequine (FLQ) antibiotic. X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), scanning electron microscopy (SEM), N2-adsorption, and the determination of a zero point charge has been used to characterize the synthesized catalysts. The degradation studies showed that the catalytic efficiency of Ti/Zn/Sep is higher than that for other catalysts. The operational parameters such as pH, initial FLQ concentration, and catalyst dosage were evaluated. UV–vis and high-resolution mass spectroscopy (HRMS) analyses were used to determine the degradation efficiency and products. ZnO played a major role in the FLQ degradation process, and sepiolite contributed to adsorption of FLQ on the catalyst surface enormously. The catalysts exhibited 11%, 23%, 63%, and 85% degradation efficiency for ZnO, TiO2, Ti/Zn, and Ti/Zn/Sep in the decomposition of FLQ, respectively.  相似文献   

6.
The interaction between poly(di-n-hexylsilane) (PDHS) and TiO2 nanoparticle was studied based on the temperature dependence of the fluorescence of a PDHS/TiO2 nanoparticle hybrid film. The polysilane is a suitable probe to investigate a guest polymer-host matrix interaction because the photophysical properties of polysilanes remarkably depend on the conformation of the σ-conjugated Si-Si chain. The PDHS/TiO2 nanoparticle hybrid film showed a fluorescence band assigned to a disordered structure even at 80 K whereas only the fluorescence band of an ordered structure was observed for the PDHS film at 80 K. The disordering of the Si-Si main chain was explained by the perturbation of the n-hexyl side chain in the neighborhood of the TiO2 nanosurface. The non-radiative deactivation of the excited state via the disorder-induced local potential minima was suggested by the temperature dependence of the fluorescence intensities of the disordered and ordered structures in the temperature region from 80 to 160 K.  相似文献   

7.
Abstract

In order to enhance the compatibility of TiO2 nanoparticles in poly(butyl acrylate) (PBA) matrix, surface modification of TiO2 was conducted using 3-methacryloxypropyl-trimethoxysilane (MPS). To improve the effect of surface modification, TiO2 was predispersed in ethanol via ultrasonic waves. The process was investigated in detail to obtain the optimum condition of ultrasonic dispersion. The dispersion of TiO2 in ethanol was evaluated via sedimentation rate. Fourier transform infrared spectroscopy and thermogravimetric analysis were performed to investigate the effect of surface modification. It was found that the organic functional groups of MPS had been successfully grafted onto the surface of TiO2 nanoparticles. Finally, both neat PBA film and TiO2/PBA composite film were prepared and characterised. The modified TiO2 presented good compatibility in PBA matrix.  相似文献   

8.
The generation of TiO2 nanoparticles by the thermal decomposition of titanium tetraisopropoxide (TTIP) was carried out experimentally using a tubular electric furnace at various synthesis temperatures (700-1300 °C) and TTIP heating temperatures (80-110 °C). The photocatalytic activity of the resulting TiO2 nanoparticles was examined by measuring the rate of methylene blue decomposition. The TiO2 nanoparticles were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) measurements and transmission electron microscopy (TEM). The crystallite size and crystallinity increased with increasing synthesis temperature and TTIP heating temperature. A TTIP heating temperature and synthesis temperature of 95 °C and 900 °C, respectively, were found to be the optimal synthesis conditions. The primary particle diameter obtained under optimum synthesis conditions was considerably smaller than the commercial photocatalyst (Degussa, P25). The specific surface areas were more than 134.4 m2 g− 1. Under the optimal conditions, the photocatalytic activity for methylene blue was higher than that of the commercial photocatalyst.  相似文献   

9.
Nanocrystalline TiO2 samples were prepared by promoting the growth of a sol–gel precursor, in the presence of water, under continuous (CW), or pulsed (PW) ultrasound. All the samples turned out to be made of both anatase and brookite polymorphs. Pulsed US treatments determine an increase in the sample surface area and a decrease of the crystallite size, that is also accompanied by a more ordered crystalline structure and the samples appear to be more regular and can be considered to contain a relatively low concentration of lattice defects. These features result in a lower recombination rate between electrons and holes and, therefore, in a good photocatalytic performance toward the degradation of NO x in air. The continuous mode induces, instead, the formation of surface defects (two components are present in XPS Ti 2p3/2 region) and consequently yields the best photocatalyst. The analysis of all the characterization data seems to suggest that the relevant parameter imposing the final features of the oxides is the ultrasound total energy per volume (E tot/V) and not the acoustic intensity or the pulsed/continuous mode.  相似文献   

10.
In this work, a series of titania-supported NiO and CdO materials were synthesized by a modified sol-gel process. The prepared photocatalysts were characterized by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), and transmission electron microscopy (TEM). The activities of titania-supported NiO and CdO photocatalysts for photocatalytic degradation of Remazole Red F3B (RR) dye, under simulated sunlight, were investigated. The photocatalytic mineralization of an RR dye solution over various NiO-x/TiO2 and CdO-x/TiO2 photocatalysts under simulated sunlight was investigated. It was worthy noticing that the photocatalytic activity of titania improved using the prepared catalysts. The prepared TiO2, NiO-5/TiO2, and CdO-2/TiO2 photocatalysts exhibited higher photocatalytic activity under simulated sunlight than did commercial TiO2. The prepared photocatalysts were stable after photocatalytic degradation of the dye. The observed photocatalytic mineralization of the dye was 51 and 71% over NiO-10/TiO2 and CdO-2/TiO2 after 180 min of irradiation, respectively. Juxtaposing a p-NiO-5/TiO2 semiconductor provided a potential approach for decreasing charge recombination. The prepared photocatalystsNiO-5/TiO2 and CdO-2/TiO2 are promising composites for the solar detoxification of textile wastewater.  相似文献   

11.
Nanosized anatase TiO2-coated kaolin composites were prepared by the chemical deposition method starting from calcined kaolin and TiCl4. The resultant TiO2 nanoparticles on the kaolin surfaces existed in anatase phase after calcination at 200, 400, and 900 °C for 1 h, respectively. The surfaces of the kaolin powders were uniformly coated by a monolayer of TiO2 nanoparticles. The higher calcination temperature was beneficial to formation of well crystallized anatase TiO2 nanoparticles. The light scattering indexes of the TiO2-coated calcined kaolin composites were two times higher than that of the kaolin substrate. XPS analysis shows that TiO2 coating layers anchored at the kaolin surfaces via the Ti-O-Si and Ti-O-Al bonds.  相似文献   

12.
The photocatalytic hydrogen evolution reaction (HER) by water splitting has been studied, using catalysts based on crystalline TiO2 nanowires (TiO2NWs), which were synthesized by a hydrothermal procedure. This nanomaterial was subsequently modified by incorporating different loadings (1%, 3% and 5%) of gold nanoparticles (AuNPs) on the surface, previously exfoliated MoS2 nanosheets, and CeO2 nanoparticles (CeO2NPs). These nanomaterials, as well as the different synthesized catalysts, were characterized by electron microscopy (HR-SEM and HR-TEM), XPS, XRD, Raman, Reflectance and BET surface area. HER studies were performed in aqueous solution, under irradiation at different wavelengths (UV-visible), which were selected through the appropriate use of optical filters. The results obtained show that there is a synergistic effect between the different nanomaterials of the catalysts. The specific area of the catalyst, and especially the increased loading of MoS2 and CeO2NPs in the catalyst substantially improved the H2 production, with values of ca. 1114 μm/hg for the catalyst that had the best efficiency. Recyclability studies showed only a decrease in activity of approx. 7% after 15 cycles of use, possibly due to partial leaching of gold nanoparticles during catalyst use cycles. The results obtained in this research are certainly relevant and open many possibilities regarding the potential use and scaling of these heterostructures in the photocatalytic production of H2 from water.  相似文献   

13.
In this study, the CO2 adsorption analysis in cellulose acetate–TiO2- and cellulose acetate–3-aminopropyl-trimethoxysilane TiO2-blended membranes was performed. The membranes were also characterized using scanning electron microscopy and Fourier transform infrared analysis techniques. The adsorption results indicated that 120 and 90°C were considered as optimized temperatures for regeneration of cellulose acetate–TiO2 and cellulose acetate–3-aminopropyl-trimethoxysilane-modified TiO2 membranes. The testing results revealed that adsorption capacity reached maximum at 3.0 bars. Validation of experimental results was performed by pseudo-first-order, second-order and intraparticle diffusion models. The correlation factor R2 represented that the second-order model was fitted well with the experimental data. The intraparticle diffusion model represented that adsorption is not a single-step process.  相似文献   

14.
Hydrophilic microporous membranes were prepared based on polypropylene (PP) cast films blended with a commercial acrylic acid grafted polypropylene (PP-g-AA) via melt extrusion followed by grafting titanium dioxide (TiO2) nanoparticles on its surface, annealing and stretching. ATR-FTIR, XPS and EDS analyses showed that the hydrophilic segments of an amphiphilic modifier (PP-g-AA) acted as surface functional groups on the film surface. The results indicated that the presence of the modifier was very important for grafting TiO2 nanoparticles on the film surface. Compared to PP and PP/PP-g-AA blend films, the water contact angle decreased by a factor of 2.5 after grafting TiO2 on the surface of the films, meanwhile the water vapor permeability of the microporous membranes prepared from those films increased by a factor of 1.5. All these results indicated that the hydrophilicity of the modified PP membranes was improved.  相似文献   

15.
Characteristics are presented of new iodine doped TiO2 (I-TiO2) prepared via the hydrothermal method, where titania (IV) complexes with a ligand containing an iodine atom have been used as a precursor. The structure of samples has been examined by XPS, XRD, UV-vis and FT-IR-ATR techniques. These studies confirm that the obtained powder exhibits a decrease in the bandgap energy value (Eg = 2.8 eV). The report presents electrochemical studies of I-TiO2 films on a Pt electrode, which allow determination of the flatband potential Efb = −0.437 V vs. SCE (in 0.5 M Na2SO4). Cyclic voltammetry measurements show anodic and cathodic activities under Vis and UV-vis radiation. The photocurrent enhancement due to visible light radiation reached 30% of the whole photoacitivity exhibited under UV-vis illumination.  相似文献   

16.
With the rapid development of nanotechnology, a variety of engineered nanoparticles (NPs) are being produced. Nanotoxicology has become a hot topic in many fields, as researchers attempt to elucidate the potential adverse health effects of NPs. The biological activity of NPs strongly depends on physicochemical parameters but these are not routinely considered in toxicity screening, such as dose metrics. In this work, nanoscale titanium dioxide (TiO2), one of the most commonly produced and widely used NPs, is put forth as a representative. The correlation between the lung toxicity and pulmonary cell impairment related to TiO2 NPs and its unusual structural features, including size, shape, crystal phases, and surface coating, is reviewed in detail. The reactive oxygen species (ROS) production in pulmonary inflammation in response to the properties of TiO2 NPs is also briefly described. To fully understand the potential biological effects of NPs in toxicity screening, we highly recommend that the size, crystal phase, dispersion and agglomeration status, surface coating, and chemical composition should be most appropriately characterized.  相似文献   

17.
In this paper, a cerium dioxide (CeO2) modified titanium dioxide (TiO2) nanotube array film was fabricated by electrodeposition of CeO2 nanoparticles onto an anodized TiO2 nanotube array. The structural investigation by X-ray diffraction, scanning electron microscopy and transmission electron microscopy indicated that the CeO2 nanoparticles grew uniformly on the walls of the TiO2 nanotubes. The composite was composed of cubic-phase CeO2 crystallites and anatase-phase TiO2 after annealing at 450 °C. The cyclic voltammetry and chronoamperometric charge/discharge measurement results indicated that the CeO2 modification obviously increased the charge storage capacity of the TiO2 nanotubes. The charge transfer process at the surface, that is, the pseudocapacitance, was the dominate mechanism of the charge storage in CeO2-modified TiO2 nanotubes. The greater number of surface active sites resulting from uniform application of the CeO2 nanoparticles to the well-aligned TiO2 nanotubes contributed to the enhancement of the charge storage density.  相似文献   

18.
The ability of TiO2 to generate reactive oxygen species under UV radiation makes it an efficient candidate in antimicrobial studies. In this context, the preparation of TiO2 microparticles coated with Ca- and Cu-based composite layers over which Cu(II), Cu(I), and Cu(0) species were identified is presented here. The obtained materials were characterized by a wide range of analytical methods, such as X-ray diffraction, electron microscopy (TEM, SEM), X-ray photoelectron (XPS), and UV-VIS spectroscopy. The antimicrobial efficiency was evaluated using qualitative and quantitative standard methods and standard clinical microbial strains. A significant aspect of this composite is that the antimicrobial properties were evidenced both in the presence and absence of the light, as result of competition between photo and electrical effects. However, the antibacterial effect was similar in darkness and light for all samples. Because no photocatalytic properties were found in the absence of copper, the results sustain the antibacterial effect of the electric field (generated by the electrostatic potential of the composite layer) both under the dark and in light conditions. In this way, the composite layers supported on the TiO2 microparticles’ surface can offer continuous antibacterial protection and do not require the presence of a permanent light source for activation. However, the antimicrobial effect in the dark is more significant and is considered to be the result of the electric field effect generated on the composite layer.  相似文献   

19.
Nanocomposites from polyethylene and TiO2 with different shape and size were prepared by direct mixing and masterbatch dilution, respectively. The mechanical properties of nanocomposites were determined and discussed in relation to the nanofiller dispersion. Moreover, the morphological aspects of polyethylene with and without nanofiller were revealed by means of SEM and WAXD. A better dispersion of the nanoparticles and increased mechanical properties were observed in the case of the masterbatch method. No important differences in mechanical and morphological characteristics of anatase and rutile containing polyethylene composites were observed, except a higher increase of the elastic modulus in case of anatase-containing composites.  相似文献   

20.
C4+ and S4+-codoped titanium dioxide (TiO2) having a rutile phase was prepared. By doping C4+ and S4+ ions into a TiO2 lattice, the absorption edge of rutile TiO2 powder was largely shifted from 400 to 700 nm. 2-Methylpyridine and methyleneblue were photocatalytically oxidized at high efficiency on C4+ and S4+-doped TiO2 under visible light at a wavelength longer than 5 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号