首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 217 毫秒
1.
2.
3.
The diffusion behavior and reactions between Al and Ca in Mg alloys by diffusion couple method were investigated. Results demonstrate that Al_2Ca is the only phase existing in the diffusion reaction layers.The volume fraction of Al_2Ca in diffusion reaction layers increases linearly with temperature. The standard enthalpy of formation for intermetallic compounds was rationalized on the basis of the Miedema model. Al-Ca intermetallic compounds were preferable to form in the Mg-Al-Ca ternary system under the same conditions. Over the range of 350–400?C, the structure of Al_2Ca is more stable than that of Al_4Ca, Al_(14)Ca_(13) and Al_3Ca_8. The growth constants of the layer Ⅰ, layer Ⅱ and entire diffusion reaction layers were determined. The activation energies for the growth of the layer Ⅰ, layer Ⅱ and entire diffusion reaction layers were(80.74 ± 3.01) k J/mol,(93.45 ± 2.12) k J/mol and(83.52 ± 1.50) k J/mol, respectively.In layer Ⅰ and Ⅱ, Al has higher integrated interdiffusion coefficients D~(Int, layer)ithan Ca. The average effective interdiffusion coefficients D_(Al)~(eff) values are higher than D_(Ca)~(eff) in the layer Ⅰ and Ⅱ.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
The present work has been conducted to evaluate the mechanical properties of nanostructured 316L and 301 austenitic stainless steels. The nanocrystalline structures were produced through martensite treatment which includes cold rolling followed by annealing treatment. The effect of equivalent rolling strain and annealing parameters on the room temperature mechanical behavior of the experimental alloys have been studied using the shear punch testing technique. The standard uniaxial tension tests were also carried out to adapt the related correlation factors. The microstructures and the volume fraction of phases were characterized by transmission electron microscopy and feritscopy methods, respectively. The results indicate that the strength of nanocrystalline specimens remarkably increases, but the ductility in comparison to the coarse-grained one slightly decreases. In addition the strength of nanocrystalline specimens has been increased by decreasing the annealing temperature and increasing the equivalent rolling strain. The analysis of the load–displacement data has also disclosed that the universal correlation of linear type (UTS = max) between shear punch test data and the tensile strength is somehow unreliable for the nanocrystalline materials. The results suggest that the actual relation between the maximum shear strength and ultimate tensile strength follows a second order equation of type UTS=aτmax2-bτmax+c.  相似文献   

16.
17.
The hot deformation behavior of a nickel-based superalloy was investigated by means of isothermal compression tests in the strain rate range of 0.001–10 s−1 at 1110 °C. Transmission electron microscope (TEM) and electron backscatter diffraction (EBSD) technique were used to study the effect of strain rate on the microstructure evolution of the alloy during hot deformation. The results revealed that the dynamic recrystallization (DRX) process was stimulated at high strain rates (ε̇5s-1) due to the high dislocation density and adiabatic temperature rise. Meanwhile, high nucleation of DRX and low grain growth led to the fine DRX grains. In the strain rate rage of 0.001–1 s−1, the volume fraction of DRX grains increased with the decreasing strain rate, and the grain growth gradually governed the DRX process. Moreover, the strain rate has an important effect on DDRX and CDRX during hot deformation. On the other hand, particular attention was also paid to the evolution of twin boundaries during hot deformation. It was found that there was a lower fraction of Σ3 boundaries at the intermediate strain rate of 1 s−1, while the fractions of Σ3 boundaries were much higher at both the lower strain rates (ε̇0.1s-1) and higher strain rates (ε̇5s-1).  相似文献   

18.
19.
The hot deformation behavior and microstructural evolution of cast-extruded AZ31B magnesium alloy and nanocomposite have been studied using processing-maps. Compression tests were conducted in the temperature range of 250–400 °C and strain rate range of 0.01–1.0 s−1. The three-dimensional (3D) processing maps developed in this work, describe the variations of the efficiency of power dissipation and flow instability domains in the strain rate (ε̇) and temperature (T) space. The deformation mechanisms namely dynamic recrystallization (DRX), dynamic recovery (DRY) and instability regions were identified using processing maps. The deformation mechanisms were also correlated with transmission electron microscopy (TEM) and optical microscopy (OM). The optimal region for hot working has been observed at a strain rate (ε̇) of 0.01 s−1 and the temperature (T) of 400 °C for both magnesium alloy and nanocomposite. Few instability regimes have been identified in this study at higher strain rate (ε̇) and temperature (T). The stability domains have been identified in the lower strain rate regimes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号