首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
邓攀  陈程  张灵志 《新能源进展》2020,8(5):413-427
硅在自然界中储量丰富,其理论比容量高达4 200 mA∙h/g,已成为高能量密度锂离子电池负极材料的研究热点。但是Si作为负极材料也存在许多不足,最大的问题是电池充放电过程中,硅体积膨胀(高达300%),导致Si基负极材料粉化脱落、电池容量迅速衰减,其循环性能尚难以满足实际需求。通过研究开发硅基负极专用黏结剂材料,可以有效抑制循环过程中硅的体积变化,维持硅负极结构稳定,提升电池循环性能。本文综述了近年来硅基负极黏结剂材料的研究进展,主要从合成高分子聚合物黏结剂、天然高分子聚合物黏结剂、导电高分子聚合物黏结剂三个方面进行详细归纳总结,并介绍了本课题组在硅基负极黏结剂方面的部分研究成果,期望能为将来的硅基负极专用黏结剂的研究和应用提供一些思路。  相似文献   

2.
硅基材料由于具有超高的理论比容量,安全的嵌锂工作电位和廉价易得等诸多优点,是下一代高比能量电池体系最理想的负极材料。尽管硅基材料的研究已经进行很长时间,但是硅基材料嵌锂时巨大的体积膨胀,循环性能较差等问题一直难以得到有效解决。开发高性能硅基负极黏结剂是解决硅基材料应用问题的重要途径之一,具有“刚柔并济”结构特性的黏结剂分子能够有效抑制硅基材料结构膨胀粉化,保持电极导电网络的完整性,从而有效提升其循环性能。本文综述了硅基负极黏结剂的特性要求,新型硅基负极黏结剂的研究进展,并对该领域未来潜在的研究方向进行了展望:复合体系聚合物黏结剂的开发;特殊空间构型黏结剂的开发;新型导电黏结剂的开发;自支撑无黏结剂硅基负极的开发。  相似文献   

3.
硅因其超高的理论比容量,有望成为下一代高性能锂离子电池的负极材料.硅在充放电过程中的剧烈体积膨胀会引起颗粒粉化、SEI膜过量生长以及活性物质失去电接触等问题,最终导致容量快速衰减.开发新型硅负极黏结剂和硅碳复合是提升硅负极性能的重要策略.生物高分子材料成本低、环境友好且富含有机官能团,非常适合用来开发低成本、高性能硅负极黏结剂,也适合作为碳前体合成硅碳复合材料.本文综述了近年来基于生物高分子的硅负极黏结剂和以生物高分子为碳前体的硅碳复合材料的研究进展.本文重点介绍了基于海藻酸钠、壳聚糖、淀粉的硅负极黏结剂,总结出生物高分子基黏结剂的主要改性方法有接枝特殊官能团、与其他聚合物共混或交联.基于这些改性方法,可分别提升黏结剂的黏附性、导电子或离子能力以及实现3D网络结构的构建.本文重点归纳了以纤维素、壳聚糖、淀粉、木质素为碳前体的硅碳复合材料,分别介绍了这些复合材料的性质、结构特点,及其对电化学性能的影响.基于以上分析,本文也指出了当前基于生物高分子的硅负极黏结剂和以生物高分子为碳前体的硅碳复合材料的不足,为其下一步发展指明了方向.  相似文献   

4.
该文是一篇近两个月的锂电池文献评述,以“lithium”和“battery*”为关键词检索了Web of Science从2022年12月1日至2023年1月31日上线的锂电池研究论文,共有3084篇,选择其中100篇加以评论。正极材料的研究包括高镍三元材料、镍酸锂和镍锰酸锂的掺杂改性和表面包覆层来稳定结构及抑制界面副反应。负极材料的研究重点包括硅基负极材料、金属锂负极和无负极技术。其中硅基负极材料的相关研究集中在通过表面包覆、界面构建和开发新黏结剂体系来缓解体积膨胀问题。金属锂负极和无负极集流体的界面构筑受到重点关注和研究。固态电解质的研究内容主要包括对硫化物固态电解质、聚合物固态电解质与硫化物-聚合物复合电解质相关的合成、电解质薄膜制备以及电解质-电极界面构筑。液态电解质方面的研究集中在使用添加剂进行电解质-电极界面设计和调控。针对固态电池、正极材料的表面包覆、复合正极制备以及锂枝晶及界面副反应抑制有多篇文献报道。其他电池技术主要偏重液态锂硫电池正极设计。表征分析涵盖了化学成分和电池失效分析、锂除沉积行为和负极SEI。理论模拟工作涉及电池性能预测和电解质设计。电池中电解质与正负极的...  相似文献   

5.
该文是一篇近两个月的锂电池文献评述,以"lithium"和"batter*"为关键词检索了Web of Science从2020年10月1日至2020年11月30日上线的锂电池研究论文,共有2731篇,选择其中100篇加以评论.层状正极材料主要研究了高镍三元材料和富锂相材料中的氧氧化还原机制,掺杂和表面包覆是常用的改性方法.硅基复合负极材料的研究重点包括负极嵌锂的体积膨胀问题以及通过引入新的黏结剂和在材料表面预形成SEI等方法提升材料的循环性能,有关负极的研究工作还包括Ti2Nb10O29负极、还原氧化石墨烯及其复合材料负极、三维碳负极材料等.电解液添加剂的研究包括适用于高电压三元材料、富锂材料、高电压磷酸钴锂材料、锂硫电池和厚电极的功能电解液添加剂.固态电解质的研究对象涵盖硫化物固体电解质、聚合物与硫化物/氧化物固体电解质复合材料、硅掺杂的Li6PS5I和硼酸锂掺杂的Li7La3Zr2O12等.无机电解质和无机/聚合物复合电解质固态电池、锂硫和锂空气电池的论文也有几篇.表征分析偏重于固液界面SEI、金属锂沉积过程、锂在电极中的空间分布he1电池气胀问题等.理论模拟工作涉及SEI形成机制以及厚电极电池的动力学等.  相似文献   

6.
该文是一篇近两个月的锂电池文献评述,以"lithium"和"batter*"为关键词检索了 Web of Science从2021年2月1日至2021年3月31日上线的锂电池研究论文,共有2566篇,选择其中100篇加以评论.本文对层状氧化物正极材料的研究集中在掺杂、包覆、前驱体及合成条件、循环中的结构变化,其中,高镍三元材料是讨论的重点.硅基负极材料方面关注体积膨胀及其带来的后续问题,相关研究内容包括对硅颗粒的包覆、复合硅基负极及其结构调控.金属锂、碳负极和氧化物负极等其他负极也有涉及,其中,对金属锂负极界面的研究和三维结构负极设计是重点.固态电解质的研究主要包括对硫化物固态电解质、氧化物固态电解质、聚合物-氧化物复合固体电解质的合成、掺杂以及相关性能研究.液态电解液方面主要为针对适应高电压三元层状氧化物正极和金属锂负极的电解液及添加剂研究,还有添加剂对正/负极界面层的调控作用和对石墨、硅负极的性能提升.对于固态电池,复合正极制备和设计、活性材料的表面修饰、锂金属/固态电解质界面等都是主要研究内容.其他电池技术偏重于基于催化、高离子/电子导电基体的复合锂硫正极构造以及"穿梭效应"的抑制.表征分析部分涵盖了金属锂沉积,石墨和硅负极的体积膨胀问题,正极的微结构、过渡金属元素溶解和产气以及固态电池中电解质分解、界面接触损失等问题.理论模拟工作涉及固态电池中界面接触损失、锂负极的沉积和剥离、电极界面稳定性.界面主要涉及固态和液态电池中SEI及其可视化表征.  相似文献   

7.
该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter~*”为关键词检索了Web of Science从2022年6月1日至2022年7月31日上线的锂电池研究论文,共有4634篇,选择其中100篇加以评论。正极材料的研究集中于高镍三元材料、镍酸锂和富锂锰基材料的表面包覆和掺杂改性,以及其在高电压下或长循环中的结构演变等。硅基复合负极材料的研究包括材料制备和对电极结构的优化以缓冲体积变化,并重点关注了功能性黏结剂的应用。金属锂负极的研究包含金属锂的表面修饰和三维结构设计。固态电解质的研究主要包括对硫化物固态电解质、氧化物固态电解质、聚合物固态电解质以及复合固态电解质的结构设计以及相关性能研究。其他电解液和添加剂的研究则主要包括不同电解质和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。固态电池方向更多关注正极中离子、电子传输能力的提升。锂硫电池的研究重点是提高硫正极的活性,抑制“穿梭”效应。电池技术方面的研究还包括电极结构设计和人造SEI层的构建。测试技术涵盖了锂沉积、硅负极演化和三元正极产气等方面。理论模拟工作侧重于固态电池中固体电解质及其与电极界面...  相似文献   

8.
硅负极具有高比容量的显著优势,其理论比容量(4 200 mA∙h/g)达到传统石墨负极的10倍以上,被认为是锂离子电池最有潜力的负极之一。然而,硅负极存在导电性较差、充放电过程中体积膨胀巨大等诸多问题,导致其循环性能较差,限制了大规模实际应用。本文提供了一种高性能硅负极的制备方法及应用,通过将硅负极分散在多级孔碳中,连同黏结剂聚丙烯腈涂覆在集流体上,再对极片进行热处理实现聚丙烯腈碳包覆,有效提高电极的整体导电性并能为巨大的体积变化提供空间,从而提升硅负极的大倍率性能和循环稳定性。  相似文献   

9.
该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2023年2月1日至2023年3月31日上线的锂电池研究论文,共有3714篇,选择其中100篇加以评论。正极材料的研究集中于镍酸锂、高镍三元材料的表面包覆和掺杂改性,以及其在长循环中的结构演变等。硅基复合负极材料的研究包括材料制备和对电极结构的优化以缓冲体积变化,并重点关注了功能性黏结剂的应用和界面的改性。金属锂负极的研究集中于金属锂的表面修饰。固态电解质的研究主要包括对硫化物固态电解质、氧化物固态电解质、氯化物固态电解质、聚合物固态电解质和复合固态电解质的结构设计以及相关性能研究。其他电解液和添加剂的研究则主要包括不同电解质和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。固态电池方向更多关注层状氧化物正极材料在硫化物、氯化物固态电池中的应用。锂硫电池的研究重点是提高硫正极的活性,抑制“穿梭”效应。电池技术方面的研究还包括干法等电极制备技术。测试技术涵盖了锂沉积和正极中锂离子输运等方面。理论模拟工作侧重于固态电池中固态电解质及其与电极界面的稳定性研究。  相似文献   

10.
硅材料作为锂离子电池负极材料具有4200 mA·h/g的超高理论比容量,也因此成为了科研机构和高校的研究热点。但是硅基材料在脱嵌锂的过程中有着巨大的体积变化,膨胀收缩率达300%,这造成了电池在充放电过程中电极材料迅速坍塌,导致了电池的循环寿命大大缩短。为了解决这一问题,本文研究了一种通过水热方法,使石墨烯和碳、硅形成一个双层包覆的三维导电网络结构。实验证明,这种Si/C/G(Si/carbon/graphene)三层结构作为锂离子电池负极材料,表现出了优越的电化学性能,比如超长循环寿命、超大充放电倍率等。这种结构的电极片以0.2 A/g的电流密度充放循环50次,比容量在2469 mA·h/g以上;2 A/g的电流密度充放循环300次,比容量保持在1500 mA·h/g以上;此外在超大电流密度32 A/g的情况下测试,比容量保持在471 mA·h/g,并且具有超强的恢复能力,表现出了卓越的倍率性能,说明这种三维导电网络结构复合材料增加了原始材料的强度韧性及导电性。可见,本工作采用的方法、设计的复合材料结构在很大程度上抑制了硅材料作为负极材料的体积效应,在锂离子电池电极材料的研究发展上具有一定的借鉴意义。  相似文献   

11.
该文是一篇近两个月的锂电池文献评述,以“lithium”和“battery*”为关键词检索了Web of Science从2022年10月1日至2022年11月30日上线的锂电池研究论文,共有3301篇,选择其中100篇加以评论。正极材料的研究主要集中在对高镍三元和尖晶石镍锰酸锂的表面改性和体相掺杂,及其在长循环过程中或高电压下所发生的表面和体相的结构演变。硅基复合负极材料的研究包括材料制备和对电极结构的优化以缓冲体积变化,并重点关注了功能性黏结剂的应用。金属锂负极的研究包含金属锂的表面修饰和无负极金属锂电池。固态电解质的研究主要包括对硫化物固态电解质、氧化物固态电解质、聚合物固态电解质以及复合固态电解质的结构设计以及相关性能研究。其他电解液和添加剂的研究则主要包括不同电解质和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。固态电池方向更多关注正极中离子、电子传输能力的提升。锂硫电池的研究重点是提高硫正极的活性,抑制“穿梭”效应。测试技术涵盖了锂沉积和硅负极演化等方面。电池工艺相关的研究工作侧重于电极极片制作和浆料的特性。  相似文献   

12.
黏结剂是影响锂离子电池电化学性能的重要组成部分,合适的黏结剂可以提高黏结强度进而降低黏结剂的用量,并提高电化学性能以及一定程度地抑制膨胀,同时水性黏结剂的使用不仅降低成本,更有利于保护环境.本文综述了水性黏结剂在锂离子电池正,负极中的应用,及其良好的电化学性能和广阔的应用前景, 阐述了不同锂离子电池电极黏结剂的特征和优缺点,说明可以代替有机溶剂型黏结剂聚偏氟乙烯的使用,分析了锂离子电池电极黏结剂的未来发展方向.  相似文献   

13.
本文是一篇近两个月的锂电池文献评述,以“lithium”和“battery*”为关键词检索了Web of Science从2023年12月1日至2024年1月31日上线的锂电池研究论文,共有6213篇,选择其中100篇加以评论。正极材料的研究集中于高镍三元、富锂正极材料的掺杂改性和表面包覆,以及其在长循环过程中的结构演变等。负极材料的研究重点包括硅基负极的界面调控和材料制备优化以缓冲体积变化、金属锂负极的界面构筑与调控。固态电解质的研究主要包括氯化物固态电解质、硫化物固态电解质和聚合物固态电解质的结构设计以及相关性能研究,电解液研究则主要包括不同电解质盐和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。针对固态电池,正极材料的体相改性和表面包覆、复合正极制备与界面修饰、锂金属负极的界面构筑和三维结构设计有多篇文献报道。锂硫电池的研究重点是硫正极的结构设计、功能涂层和电解液的改进,固态锂硫电池也引起了广泛关注。电池工艺技术方面的研究包括干法等电极制备技术、黏结剂的研究。表征分析涵盖了正极材料的结构相变、锂沉积负极的界面演变等。理论模拟工作侧重于界面离子传输的研究,以及通过...  相似文献   

14.
纳米石墨化碳因其优异的导电、导热及力学性能近年来备受重视,并在锂离子电池体系中得到广泛运用。纳米石墨化碳具有的优异电学性能及纳米尺度结构特征使其在解决锂离子电池中高导电性、导热性、充放电过程中的柔性及结构稳定性等方面发挥了重要作用。本文综述了近年来纳米石墨化碳在锂离子电池应用中的最新进展和研究热点,包括纳米石墨化碳在锂离子电池中直接充当高容量负极材料,纳米石墨化碳作为高性能骨架材料为电极提供导电及力学网络,与硅、金属氧化物等高容量电极材料复合形成同轴、核壳等结构的高容量电极材料甚至柔性电极等。如何进一步认识纳米石墨化碳储锂机制,发展其精确可控制备科学和工程技术,进而在三维尺度上构建高效的锂离子电池电极材料结构仍是未来的重点研究方向。  相似文献   

15.
锂离子电池的成功商业化,起始于石油焦负极材料.负极作为锂离子电池必不可少的关键材料,目前主要集中在碳,钛酸锂以及硅基等合金类负极,采用传统的碳负极可以基本满足消费电子,动力电池,储能电池的要求,采用钛酸锂可以满足高功率密度,长循环寿命的要求,采用合金类负极材料有望进一步提高能量密度.本文小结了目前广泛使用和正在研究的锂离子电池负极材料的性能特点,讨论了下一代锂离子电池负极材料的研究和发展状况.  相似文献   

16.
硅基材料因其高能量密度、适中的充放电平台以及丰富的储量成为最具有潜力的下一代锂离子电池负极材料,但其较差的循环稳定性是目前硅基负极材料应用的瓶颈。目前的研究主要通过导电性改进、控制体积膨胀和改进固体电解质界面这三方面来改进材料,并取得了一定的效果。但是,目前的改进主要是从电化学的角度出发,忽略了硅基材料与电解液之间的本征化学反应。本文综述了清华大学化工系魏飞课题组近年来在硅基负极与电解液本征化学反应分析与抑制策略的系列工作,从硅基材料与电解液的反应动力学出发,发现了影响硅基负极界面稳定性的另外因素,对其进行深入研究的基础上,提出了抑制副反应的有效策略,研究了抑制本征化学反应的策略。结果表明,通过引入陶瓷包覆层形成规整人造SEI层,在保证锂离子和电子的传输前提下,可有效抑制硅基材料与电解液的化学反应。本文对硅基材料与电解液的本征化学反应的抑制提出了有效策略,为提高硅基负极材料循环稳定性提供了新思路,有效指导了硅基负极材料的发展。  相似文献   

17.
静电纺丝法由于具有工艺简单、功能多样等优点,是一种重要的制备一维锂钠离子电池纳米结构电极材料的方法。目前,已有大量利用静电纺丝技术制备高性能电极材料的研究报道,但具有系统性和针对性的综述论文尚十分有限。碳材料是最早被研究且已实现商业化的锂离子电池负极材料,硅材料则是理论容量最高的负极材料,因此,两者一直是学术界和工业界关注的重点;但碳材料理论容量低和硅材料体积变化大的问题严重阻碍了各自更广泛的实际应用。静电纺丝技术被证明是一种可以解决上述问题的十分有效的方法。因此,本文系统地综述了静电纺丝法制备的硅基和碳基纳米纤维在锂钠离子电池负极材料上的应用和发展,重点从静电纺丝原理、硅碳材料的设计及合成、结构的调控与优化、复合材料的制备到电化学性能的提高等方面作了详细介绍和讨论,同时也指出静电纺丝法在大规模生产中的不足及未来可能的发展方向。希望此综述可以为先进储能材料(尤其是硅基和碳基纳米电极材料)的设计和制备提供一些有益的指导和帮助。  相似文献   

18.
该文是一篇近两个月的锂电池文献评述,以"lithium"和"batter*"为关键词检索了Web of Science从2019年6月1日至2019年7月31日上线的锂电池研究论文,共有3486篇,选择其中100篇加以评论。正极材料主要研究了层状三元材料和钴酸锂材料的掺杂表面包覆对其性能的改善作用。硅基负极材料和金属锂负极侧重于设计三维结构、表面修饰和使用功能电解液添加剂来提高循环性能和库仑效率。固体电解质研究集中在硫化物、含卤素的硫化物和聚合物,电解液侧重于研究提高正极表面CEI稳定性的和抑制正极溶解的过渡金属离子对负极SEI稳定性影响的功能添加剂。固态电池的研究主要为固态锂电池和锂离子电池正负极的复合电极设计。锂硫电池的研究重点在于正极的催化活性研究和负极界面的稳定性研究。原位分析偏重于锂离子和固态锂二次电池的失效机制分析。还有少数几篇涉及理论计算和电池回收。  相似文献   

19.
该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2021年12月1日至2022年1月31日上线的锂电池研究论文,共有3795篇,选择其中100篇加以评论。正极材料方面主要研究了高镍三元、富锂正极材料的包覆和掺杂改性,以及其在高电压下所发生的表面和体相的结构演变。金属锂负极的研究包含金属锂的表面修饰、三维结构设计及其沉积形态和均匀性的研究。合金化储锂负极材料的研究侧重于复合电极结构设计和各类黏结剂的开发,以缓解循环过程中负极材料的体积变化,维持电极完整性。固态电解质的研究主要包括对现有固态电解质的合成、掺杂、结构设计、稳定性和相关性能研究以及对新型固态电解质的探索。而其他电解液和添加剂的研究则主要包括不同电解质和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。固态电池方向更多关注于复合正极设计和界面修饰和影响锂枝晶生长的因素。其他电池技术偏重于基于催化、高离子/电子导电基体的复合锂硫正极构造以及“穿梭效应”的抑制。电池测试技术方面涵盖了对Li金属的沉积形貌及SEI、快充放条件下正极材料各性质、固态电池的界面问题的观测和分析。理论计算涉及掺杂固体电解质电导率、固态电池中界面应力分析等进行了探讨。而界面问题侧重于关注固体电解质和Li金属负极界面稳定性。此外,电极预锂化研究论文也有多篇。  相似文献   

20.
二维MXene材料具有大且可调节的层间距,是一类备受关注的钠离子电池负极材料。为探究MXene材料储钠性能的调控机制,本工作选择Ti基碳化物MXene为目标材料,采用第一性原理计算预测和实验验证相结合的方法,研究了组成成分和结构调控对其储钠性能的影响。组成成分调控包括官能团取代和N对C的置换,结构调控主要是构建Ti3C2Tx MXene与过渡金属硫属化合物的异质结构。研究结果表明,含氧官能团和异质结构能够扩大MXene材料的层间距,防止层间堆叠;N置换可以增强电荷传输,有利于提高材料的结构稳定性和导电性,从而提高材料的比容量。其中构建异质结构对材料的性能改善作用最为显著。研究结果可为钠离子电池负极材料的选材提供理论依据,有助于开发高性能MXene基储钠负极材料。此外,本工作提出的分析方法也可以扩展应用到金属离子电池电极材料的结构和性能研究中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号