首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simultaneous evaluation of multiple time scale decisions has been regarded as a promising avenue to increase the process efficiency and profitability through leveraging their synergistic interactions. Feasibility of such an integral approach is essential to establish a guarantee for operability of the derived decisions. In this study, we present a modeling methodology to integrate process design, scheduling, and advanced control decisions with a single mixed-integer dynamic optimization (MIDO) formulation while providing certificates of operability for the closed-loop implementation. We use multi-parametric programming to derive explicit expressions for the model predictive control strategy, which is embedded into the MIDO using the base-2 numeral system that enhances the computational tractability of the integrated problem by exponentially reducing the required number of binary variables. Moreover, we apply the State Equipment Network representation within the MIDO to systematically evaluate the scheduling decisions. The proposed framework is illustrated with two batch processes with different complexities.  相似文献   

2.
An efficient decomposition method to solve the integrated problem of scheduling and dynamic optimization for sequential batch processes is proposed. The integrated problem is formulated as a mixed‐integer dynamic optimization problem or a large‐scale mixed‐integer nonlinear programming (MINLP) problem by discretizing the dynamic models. To reduce the computational complexity, we first decompose all dynamic models from the integrated problem, which is then approximated by a scheduling problem based on the flexible recipe. The recipe candidates are expressed by Pareto frontiers, which are determined offline by using multiobjective dynamic optimization to minimize the processing cost and processing time. The operational recipe is then optimized simultaneously with the scheduling decisions online. Because the dynamic models are encapsulated by the Pareto frontiers, the online problem is a mixed‐integer programming problem which is much more computationally efficient than the original MINLP problem, and allows the online implementation to deal with uncertainties. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2379–2406, 2013  相似文献   

3.
We propose a novel method for integrating planning and scheduling problems under production uncertainties. The integrated problem is formulated into a bi-level program. The planning problem is solved in the upper level, while the scheduling problems in the planning periods are solved under uncertainties in the lower level. The planning and scheduling problems are linked via service level constraints. To solve the integrated problem, a hybrid method is developed, which iterates between a mixed-integer linear programming solver for the planning problem and an agent-based reactive scheduling method. If the service level constraints are not met, a cutting plane constraint is generated by the agent-based scheduling method and appended to the planning problem which is solved to determine new production quantities. The hybrid method returns an optimality gap for validating the solution quality. The proposed method is demonstrated by two complicated problems which are solved efficiently with small gaps less than 1%.  相似文献   

4.
Hoist scheduling, especially cyclic hoist scheduling (CHS), is used to maximize the manufacturing productivity of electroplating processes. Water-reuse network design (WRND) for the electroplating rinsing system targets the optimal water allocation, such that fresh water consumption and wastewater generation are minimized. Currently, there is still a lack of studies on integrating CHS and WRND technologies for electroplating manufacturing. In this paper, a multi-objective mixed-integer dynamic optimization (MIDO) model has been developed to integrate CHS and WRND technologies for simultaneous consideration of productivity and water use efficiency for environmentally benign electroplating. The orthogonal collocation method on finite elements is employed to convert the MIDO problem into a mixed-integer nonlinear programming (MINLP) problem. The efficacy of the methodology is demonstrated by solving a real electroplating example. It demonstrates that the computational methods of production scheduling, process design, and dynamic optimization can be effectively integrated to create economic and environmental win-win situations for the electroplating industry.  相似文献   

5.
We consider strategies for integrated design and control through the robust and efficient solution of a mixed-integer dynamic optimization (MIDO) problem. The algorithm is based on the transformation of the MIDO problem into a mixed-integer nonlinear programming (MINLP) program. In this approach, both the manipulated and controlled variables are discretized using a simultaneous dynamic optimization approach. We also develop three MINLP formulations based on a nonconvex formulation, the conventional Big-M formulation and generalized disjunctive programming (GDP). In addition, we compare the outer approximation and NLP branch and bound algorithms on these formulations. This problem is applied to a system of two series connected continuous stirred tank reactors where a first-order reaction takes place. Our results demonstrate that the simultaneous MIDO approach is able to efficiently address the solution of the integrated design and control problem in a systematic way.  相似文献   

6.
Online integration of scheduling and control is crucial to cope with process uncertainties. We propose a new online integrated method for sequential batch processes, where the integrated problem is solved to determine controller references rather than process inputs. Under a two‐level feedback loop structure, the integrated problem is solved in a frequency lower than that of the control loops. To achieve the goal of computational efficiency and rescheduling stability, a moving horizon approach is developed. A reduced integrated problem in a resolving horizon is formulated, which can be solved efficiently online. Solving the reduced problem only changes a small part of the initial solution, guaranteeing rescheduling stability. The integrated method is demonstrated in a simulated case study. Under uncertainties of the control system disruption and the processing unit breakdown, the integrated method prevents a large loss in the production profit compared with the simple shifted rescheduling solution. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1654–1671, 2014  相似文献   

7.
Integration of production scheduling and dynamic optimization can improve the overall performance of multi-product CSTRs. However, the integration leads to a mixed-integer dynamic optimization problem, which could be challenging to solve. We propose two efficient methods based on the generalized Bender decomposition framework that take advantage of the special structures of the integrated problem. The first method is applied to a time-slot formulation. The decomposed primal problem is a set of separable dynamic optimization problems and the master problem is a mixed-integer nonlinear fractional program. The master problem is then solved to global optimality by a fractional programming algorithm, ensuring valid Benders cuts. The second decomposition method is applied to a production sequence formulation. Similar to the first method, the second method uses a fractional programming algorithm to solve the master problem. Compared with the simultaneous method, the proposed decomposition methods can reduce the computational time by over two orders of magnitudes for a polymer production process in a CSTR.  相似文献   

8.
Decentralized control system design comprises the selection of a suitable control structure and controller parameters. In this contribution, the optimal control structure and the optimal controller parameters are determined simultaneously using mixed‐integer dynamic optimization (MIDO) under uncertainty, to account for nonlinear process dynamics and various disturbance scenarios. Application of the sigma point method is proposed in order to approximate the expectation and the variance of a chosen performance index with a minimum number of points to solve the MIDO problem under uncertainty. The proposed methodology is demonstrated with a benchmark problem of an inferential control for a reactive distillation column. The results are compared with established heuristic design methods and with previous deterministic approaches.  相似文献   

9.
Integration of scheduling and control results in Mixed Integer Nonlinear Programming (MINLP) which is computationally expensive. The online implementation of integrated scheduling and control requires repetitively solving the resulting MINLP at each time interval. (Zhuge and Ierapetritou, Ind Eng Chem Res. 2012;51:8550–8565) To address the online computation burden, we incorporare multi‐parametric Model Predictive Control (mp‐MPC) in the integration of scheduling and control. The proposed methodology involves the development of an integrated model using continuous‐time event‐point formulation for the scheduling level and the derived constraints from explicit MPC for the control level. Results of case studies of batch processes prove that the proposed approach guarantees efficient computation and thus facilitates the online implementation. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3169–3183, 2014  相似文献   

10.
11.
This paper addresses the application of stochastic optimization approaches to the synthesis of heat integrated complex distillation system, which is characterized by large-scale combinatorial feature. Conventional and complex columns, thermally coupled (linked) side strippers and side rectifiers as well as heat integration between the different columns are simultaneously considered. The problem is formulated as an MINLP (mixed-integer nonlinear programming) problem. A simulated annealing algorithm is proposed to deal with the MINLP problem and a shortcut method is applied to evaluate all required design parameters as well as the total cost function. Two illustrating examples are presented.  相似文献   

12.
The main objective of this paper is to develop an integrated approach to coordinate short-term scheduling of multi-product blending facilities with nonlinear recipe optimization. The proposed strategy is based on a hierarchical concept consisting of three business levels: Long-range planning, short-term scheduling and process control. Long-range planning is accomplished by solving a large-scale nonlinear recipe optimization problem (multi-blend problem). Resulting blending recipes and production volumes are provided as goals for the scheduling level. The scheduling problem is formulated as a mixed-integer linear program derived from a resource-task network representation. The scheduling model permits recipe changeovers in order to utilize an additional degree of freedom for optimization. By interpreting the solution of the scheduling problem, new constraints can be imposed on the previous multi-blend problem. Thus bottlenecks arising during scheduling are considered already on the topmost long-range planning level. Based on the outlined approach a commercial software system has been designed to optimize the operation of in-line blending and batch blending processes. The application of the strategy and software is demonstrated by a detailed case study.  相似文献   

13.
Decentralized control system design comprises the selection of a suitable control structure and controller parameters. Here, mixed integer optimization is used to determine the optimal control structure and the optimal controller parameters simultaneously. The process dynamics is included explicitly into the constraints using a rigorous nonlinear dynamic process model. Depending on the objective function, which is used for the evaluation of competing control systems, two different formulations are proposed which lead to mixed‐integer dynamic optimization (MIDO) problems. A MIDO solution strategy based on the sequential approach is adopted in the present paper. Here, the MIDO problem is decomposed into a series of nonlinear programming (NLP) subproblems (dynamic optimization) where the binary variables are fixed, and mixed‐integer linear programming (MILP) master problems which determine a new binary configuration for the next NLP subproblem. The proposed methodology is applied to inferential control of reactive distillation columns as a challenging benchmark problem for chemical process control.  相似文献   

14.
Feedback linearization techniques are used to deal with the nonlinear controller designs which have attracted many researchers' attention in recent years. The approach has been applied successfully to solve a number of practical nonlinear control problems, but typically requires on-line full state measurement which is usually not the case in real chemical process industries. In this paper, we address the problem of synthesizing nonlinear state feedback controllers for time-delay nonlinear systems which are perturbed by disturbances. On-line estimation of the unmeasurable disturbances and unavailable state variables is introduced to facilitate the implementation of coordinate transformations and state feedback and prediction. Two kinds of dynamic compensators are then proposed to handle the process deadtime. Finally numerical simulations in a CSTR example demonstrate the promising performance of the overall nonlinear control structure in disturbance rejection.  相似文献   

15.
In the pursuit of integrated scheduling and control frameworks for chemical processes, it is important to develop accurate integrated models and computational strategies such that optimal decisions can be made in a dynamic environment. In this study, a recently developed switched system formulation that integrates scheduling and control decisions is extended to closed-loop operation embedded with nonlinear model predictive control (NMPC). The resulting framework is a nested online scheduling and control loop that allows to obtain fast and accurate solutions as no model reduction is needed and no integer variables are involved in the formulations. In the outer loop, the integrated model is solved to calculate an optimal product switching sequence such that the process economics is optimized, whereas in the inner loop, an NMPC implements the scheduling decisions. The proposed scheme was tested on two multi-product continuous systems. Unexpected large disturbances and rush orders were handled effectively.  相似文献   

16.
Semicontinuous distillation systems are notoriously difficult to design and optimize because the structural parameters, operational parameters, and control system must all be determined simultaneously. In the past 15 years of research into semicontinuous systems, studies of the optimal design of these systems have all been limited in scope to small subsets of the parameters, which yields suboptimal and often unsatisfactory results. In this work, for the first time, the problem of integrated design and control of semicontinuous distillation processes is studied by using a mixed integer dynamic optimization (MIDO) problem formulation to optimize both the structural and control tuning parameters of the system. The public model library (PML) of gPROMS is used to simulate the process and the built-in optimization package of gPROMS is used to solve the MIDO via the deterministic outer approximation method. The optimization results are then compared to the heuristic particle swarm optimization (PSO) method.  相似文献   

17.
This contribution deals with the solution of two-stage stochastic integer programs with discrete scenarios (2-SIPs) that arise in chemical batch scheduling under uncertainty. Since the number of integer variables in the second-stage increases linearly with the number of scenarios considered, the real world applications usually give rise to large scale deterministic equivalent mixed-integer linear programs (MILPs) which cannot be solved easily without incorporating decomposition methods or problem specific knowledge.In this paper a new hybrid algorithm is proposed to solve 2-SIPs based on stage decomposition: an evolutionary algorithm performs the search on the first-stage variables while the second-stage subproblems are solved by mixed-integer programming. The algorithm is tested for a real-world scheduling problem with uncertainties in the demands and in the production capacity. Numerical experiments have shown, that the new algorithm is robust and superior to state-of-the-art solvers if good solutions are needed in short CPU-times.  相似文献   

18.
To improve the quality of decision making in the process operations, it is essential to implement integrated planning and scheduling optimization. Major challenge for the integration lies in that the corresponding optimization problem is generally hard to solve because of the intractable model size. In this paper, augmented Lagrangian method is applied to solve the full-space integration problem which takes a block angular structure. To resolve the non-separability issue in the augmented Lagrangian relaxation, we study the traditional method which approximates the cross-product term through linearization and also propose a new decomposition strategy based on two-level optimization. The results from case study show that the augmented Lagrangian method is effective in solving the large integration problem and generating a feasible solution. Furthermore, the proposed decomposition strategy based on two-level optimization can get better feasible solution than the traditional linearization method.  相似文献   

19.
The development of well-devised irrigation scheduling methods is desirable from the perspectives of plant quality and water conservation. Accordingly, in this article, a mixed-integer model predictive control system is proposed to address the daily irrigation scheduling problem. In this framework, a long short-term memory (LSTM) model of the soil–crop–atmosphere system is employed to evaluate the objective of ensuring optimal water uptake in crops while minimizing total water consumption and irrigation costs. To enhance the computational efficiency of the proposed method, a heuristic method involving the logistic sigmoid function is used to approximate the binary variable that arises in the mixed-integer formulation. Through computer simulations, the proposed scheduler is applied to homogeneous and spatially variable fields. The results of these simulation experiments reveal that the proposed method can prescribe optimal/near-optimal irrigation schedules that are typical of irrigation practice within practical computational budgets.  相似文献   

20.
Advanced feedback control for optimal operation of mineral grinding process is usually based on the model predictive control (MPC) dynamic optimization. Since the MPC does not handle disturbances directly by controller design, it cannot achieve satisfactory effects in controlling complex grinding processes in the presence of strong disturbances and large uncertainties. In this paper, an improved disturbance observer (DOB) based MPC advanced feedback control is proposed to control the multivariable grinding operation. The improved DOB is based on the optimal achievable H 2 performance and can deal with disturbance observation for the nonminimum-phase delay systems. In this DOB-MPC advanced feedback control, the higher-level optimizer computes the optimal operation points by maximize the profit function and passes them to the MPC level. The MPC acts as a presetting controller and is employed to generate proper pre-setpoint for the lower-level basic feedback control system. The DOB acts as a compensator and improves the operation performance by dynamically compensating the setpoints for the basic control system according to the observed various disturbances and plant uncertainties. Several simulations are performed to demonstrate the proposed control method for grinding process operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号