首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 494 毫秒
1.
页岩气作为国家新能源战略的重要组成部分,其开采一般采用水力压裂技术实现,生产过程中伴生数量较大的压裂返排液(采出水)。在国家“双碳”战略下,高盐度、高COD值的压裂返排液达标处置成为一个重要的行业性绿色技术命题。聚焦页岩气压裂返排液生物处理技术,总结了活性污泥、生物膜、膜生物反应器(MBR)、好氧颗粒污泥等技术的研究进展,根据压裂返排液水质特性比较了不同工艺方法的优势与短板,并分析了生物强化技术在压裂返排液处理过程中的应用前景,为页岩气压裂返排液绿色高效处理处置决策提供参考。   相似文献   

2.
为了避免压裂返排液对常规油气田采出水处理站的干扰和冲击,延长油田某采油厂建设了处理量为20 m3/h的压裂返排液处理站,处理后的返排液用于回用配液。压裂返排液处理回用技术在现场应用结果表明:该处理工艺稳定,设备操作简单,处理后的清水重新配制的压裂液已应用于多个压裂井场,压裂作业取得成功。该技术实现了水资源的循环利用,经济效益和社会效益显著。  相似文献   

3.
长宁-威远地区页岩气压裂返排液处理技术与应用   总被引:1,自引:1,他引:0  
针对长宁-威远地区页岩气开发存在的压裂返排液无害化处理难、现场施工配液用水缺乏等问题,分析了该地区页岩气压裂返排液的主要成分,明确了细菌、悬浮物以及高价金属离子的浓度是影响压裂返排液回用的主要因素。通过杀菌剂灭菌、絮凝沉降悬浮物、化学沉淀高价金属离子以及过滤絮体和沉淀等措施,开发出了适合长宁-威远地区页岩气压裂返排液回用的处理方法及处理工艺单元化的撬装处理装置,并在W204井区集气站进行了成功应用。处理后的压裂返排液清澈透明,水质满足行业标准要求,并成功回用于W204H4平台施工,施工性能稳定,实现了节能减排。  相似文献   

4.
中国页岩气资源丰富,主要分布在人口密集的南方海相碳酸盐岩分布区,地质地表条件复杂,生态环境脆弱,水资源匮乏或分布不均,大规模压裂开采存在很高水资源利用压力和严重水环境污染风险。综合分析页岩气压裂返排液/采出水的氢、氧、硼、锂、锶等传统与非传统稳定同位素地球化学特征显示:四川盆地返排液/采出水的氢氧同位素与寒武系、二叠系和三叠系的须家河组、嘉陵江组、雷口坡组常规井采出水演化趋势相近,与震旦系常规井采出水不同,表明四川盆地返排液/采出水为压裂注入液与滞留在志留系页岩中的地层卤水的混合产物,其高盐度端元化学组成更接近寒武系地层卤水,但其δ11B值要高于后者。四川盆地页岩气压裂返排液/采出水δ11B值与美国Marcellus的相近,都与蒸发相海水有关,与盆地内不同层系常规井采出水有一定的重合,无法进行精确区分,但其δ11B和B/Cl值与河水和非海相的柴达木盆地页岩气井返排液/采出水能够明显区分。四川盆地页岩气压裂返排液/采出水δ7Li值稍高于美国Marcellus的,与长江水的δ7Li...  相似文献   

5.
美国页岩气压裂返排液处理技术现状及启示   总被引:14,自引:0,他引:14  
水力压裂技术是目前页岩气开发依靠的主要储层改造手段,但采用该技术开采页岩气对水资源的消耗情况和压裂施工完成后返排液如何处置则引起了人们广泛的关注。为此,以美国Marcellus页岩区和Barnett页岩区为例,分析整理了其压裂返排液的水质特点与处置方式。在系统归纳美国页岩气开发过程中形成的返排液管理路线的基础上,从处理回用和处理外排两个方面介绍了返排液处理技术现状及研究进展。结论认为:从目前国外应用和研究现状来看,页岩气压裂返排液处理的理论和技术是相对成熟的。进而结合我国页岩气开发的形势,提出了符合实际的压裂返排液处理技术研究框架,明确了研究主题,提出了研究方向和目标建议:①完善页岩气压裂返排液深井灌注技术标准体系;②开展页岩气压裂返排液处理回用技术研究,研发耐盐耐硬度压裂液体系及配方;③开展其他废水回用配制页岩气压裂液体系或无水压裂可行性研究;④探索压裂返排液外排技术应用的可能性。以期为上述热点问题的最终解决提供技术思路。  相似文献   

6.
为了解决威远地区页岩气压裂返排液无害化处理成本高、处理手段单一、安全环保隐患突出等问题,文章分析了威远地区压裂返排液的碱度、密度、离子含量、物化指标等,明确了影响压裂返排液直接回用配制钻井液的主要因素。通过对比测试优选处理剂,对压裂返排液进行了碱度调节、抑泡处理、杀菌处理、高价金属离子处理。回用处理后的返排液配制钻井液,与未处理返排液配制的钻井液相比,高温高压失水从48 mL降至12 mL,起泡率从13.3%降至0。经过对钻井液体系中处理剂种类和加量进一步优选,优化后的钻井液体系高温高压失水降低至8.8 mL,综合性能与清水配制的钻井液体系一致,满足现场钻进需求,实现压裂返排液在现场直接处理回用,保障页岩气绿色勘探开发。  相似文献   

7.
应用油藏数值模拟器建立了考虑页岩气吸附特征、压裂后气水分布特征及裂缝复杂形态的页岩气水平井多段压裂排采模型,基于川东南某页岩气评价井,以压裂后累计产气量和返排率最大化为目标,研究裂缝参数对页岩气压裂后排采的影响。结果表明,缝高剖面和裂缝形态对压后产气量具有显著影响,但裂缝参数对返排率无显著影响;可采取变排量、胶液前置造缝等技术实现设计的裂缝参数;示例井历史拟合结果验证了排采模型的可靠性,为相似页岩气水平井压裂优化设计提供了理论依据。  相似文献   

8.
针对页岩气、致密气等非常规气藏体积压裂过程中存在的配液用水缺乏、压裂返排液处理困难、环境污染风险大等问题,探讨了大规模增产作业中的液体回用技术。大规模增产作业对水资源的需求量大,井场用水供需矛盾突出,且产生的压裂返排液量大,面临的环境形势严峻,制约了非常规气藏的开发。压裂返排液的组成复杂,其成分主要取决于压裂液配液水质、压裂液化学组成、储层地质化学、地层水等,影响其回用时的压裂液性能,需针对性地进行处理。大规模增产作业中的液体回用技术主要是通过杀菌、沉降除机械杂质、化学沉淀除高价金属离子、补充损失的添加剂等措施使压裂返排液的性能满足再次施工要求。该技术在四川盆地须家河致密气储层及侏罗系致密油储层中得到了广泛应用,返排液回收后的利用率达95%,节约了水资源,实现了循环经济。  相似文献   

9.
四川盆地南部长宁—威远国家级页岩气示范区页岩气开采普遍采用了体积压裂技术,单井水平井压裂液用量介于4×104~5×104m3、支撑剂(石英砂和陶粒)用量介于2.5×103~3.0×103t,在压裂施工结束后的页岩气排采和生产过程中,压裂返排液对地面排采流程和地面集输系统带来了不同程度的腐蚀,有可能致使设备和管线穿孔失效,进而影响生产系统的安全运行。为了提高页岩气集输系统的安全运行水平,基于中国石油西南油气田公司天然气腐蚀控制技术支撑平台,借助于腐蚀环境和生产工况分析、材料失效评价及优选、杀菌缓蚀剂应用和生产工艺参数控制优化等方法和手段,开展了川南页岩气集输系统腐蚀行为和控制措施研究。研究结果表明:①川南页岩气集输系统主要表现为冲刷腐蚀和电化学腐蚀;②冲刷腐蚀主要集中在页岩气站内工艺流程,体现在砂粒对弯头、三通、阀门等部位持续的机械磨损;③电化学腐蚀主要集中在页岩气站外集气管线,体现在积液环境中二氧化碳与硫酸盐还原菌的共同腐蚀作用;④采用提高除砂效率、优化流程设计等手段,可以有效...  相似文献   

10.
页岩气井返排流程是页岩气藏工厂化压裂作业必不可少的组成部分。为了满足页岩气丛式井拉链式压裂—排采一体化作业,在现场实践基础上,设计了可满足各井除砂、连续排液、多井同步计量等功能的模块化、标准化地面返排流程;同时对页岩气井压后返排特征进行了剖析,形成了适合长宁—威远区块大规模加砂压裂后"闷井、控制、加速、平稳"的连续排采制度。长宁—威远区块标准化地面返排流程及排采制度的成型可为我国其他页岩气藏的勘探开发提供借鉴。  相似文献   

11.
关井时机对页岩气井返排率和产能的影响   总被引:2,自引:0,他引:2  
页岩气井压后返排率普遍较低,大量的压裂液永久赋存于储层中,对页岩气井的生产有可能造成不利影响。为此,以实际生产数据为基础,分析了页岩气井早期生产返排特征,并根据典型数据建立相应的数值模型,研究了不同时机关井持续时间、生产制度对页岩气井返排率和产能的影响。结果表明:①在返排前关井期间,极窄的相渗曲线共渗区急剧降低压裂液在储层中的渗吸运移速度,关井100 d后移动距离小于3 m,随着关井持续时间增加,压裂液返排率呈指数降低,开井的初始产气量先减小后增大,对长期产气量的影响则恰好相反,因此,并不能简单得出关井时间越长,越有利于生产的结论 ;②而在生产返排后关井期间,随着关井持续时间增加,返排率减小,开井的初始产气量增大,长期产气量则会减小,但相比之下,返排后关井效应弱于返排前;③对于生产制度而言,生产压差增大会掩盖应力敏感导致的渗透率降低效应,最终表现为累计产气量、累计产水量都增加,同时,高生产压差人工缝底部积液,而低压差含水饱和度则几乎为0。该研究成果为认识压裂液的滤失机理及其在储层中的赋存方式、确定页岩气多段压裂水平井的最佳关井时间与生产制度,提供了技术支撑。  相似文献   

12.
水力压裂技术是页岩气开发的核心技术之一,大规模水力压裂技术可能会带来大量压裂返排液,而压裂返排液存在污染地下水和地表水等风险.综合对比分析四川盆地威远页岩气开发区压裂返排液与盆地内不同层系地层水地球化学特征,结果表明:威远页岩气返排液具有高矿化度、高含金属离子的特点,但与地层水相比,返排液中钠(7334 mg/L,n=...  相似文献   

13.
滑溜水和线性胶压裂液体系在页岩油气的增产中得到了广泛应用。但随着页岩油气资源开发的不断深入,该体系也暴露出了携砂能力有限、返排液处理难度高和对储层伤害大等诸多问题。因此,分析了目前页岩储层压裂工作液体系存在的问题,认为在掌握了页岩软化的损伤机理后,应该对前期的压裂施工和室内岩心评价资料进行整理,对由页岩软化损伤造成的压后无效井,进行再一次的增产尝试。综述了新型的页岩储层压裂工作液体系,认为基于产出水配制压裂液是必然的节能减排发展趋势;泡沫压裂液是有效的少水压裂方案;而超低浓度、疏水缔合和星形聚合物压裂液体系都具有较强的工业应用前景。根据调研内容提出了页岩储层体积压裂的节水方案,建议根据压裂液再生后的类型和用途,具有针对性地净化和处理返排液,从而降低返排液的处理成本。   相似文献   

14.
四川盆地南部长宁—威远国家级页岩气示范区页岩气开采普遍采用了体积压裂技术,单井水平井压裂液用量介于4×104~5×104 m3、支撑剂(石英砂和陶粒)用量介于2.5×103~3.0×103 t,在压裂施工结束后的页岩气排采和生产过程中,压裂返排液对地面排采流程和地面集输系统带来了不同程度的腐蚀,有可能致使设备和管线穿孔失效,进而影响生产系统的安全运行。为了提高页岩气集输系统的安全运行水平,基于中国石油西南油气田公司天然气腐蚀控制技术支撑平台,借助于腐蚀环境和生产工况分析、材料失效评价及优选、杀菌缓蚀剂应用和生产工艺参数控制优化等方法和手段,开展了川南页岩气集输系统腐蚀行为和控制措施研究。研究结果表明:①川南页岩气集输系统主要表现为冲刷腐蚀和电化学腐蚀;②冲刷腐蚀主要集中在页岩气站内工艺流程,体现在砂粒对弯头、三通、阀门等部位持续的机械磨损;③电化学腐蚀主要集中在页岩气站外集气管线,体现在积液环境中二氧化碳与硫酸盐还原菌的共同腐蚀作用;④采用提高除砂效率、优化流程设计等手段,可以有效控制冲刷腐蚀;⑤加注杀菌缓蚀剂并配套生产管理措施,可以有效控制电化学腐蚀;⑥页岩气集输系统腐蚀评价与控制工作应从设计阶段就开始考虑。结论认为,所形成的集材料优选、设备结构优化、腐蚀介质处理和运行工艺参数优化控制等为一体的页岩气集输系统整体腐蚀控制技术,有效地减缓了川南页岩气集输系统的腐蚀失效、提升了安全运行水平。  相似文献   

15.
目前页岩气水平井压裂后排采主要依靠现场经验,规律性不强。为此,通过挖掘气藏数值模型的功能,并结合井筒流动模型,初步研究了页岩气水平井分段压裂排采规律。基于正交设计原理,考虑了页岩基质参数、裂缝参数及生产参数等13个影响因素。结果表明,影响压后返排率的因素按影响程度排序依次为破胶液黏度、压力系数、井底流压、段数、单段注入量、裂缝半长、日排液量、返排时机、导流能力、束缚水饱和度、裂缝形态、裂缝支撑剖面和吸附气含量。为了取得最好的压裂后排采效果,上述不可控参数可作为选井、选段的重要依据,而可控参数可用来对压裂施工参数进行优化调整。该成果已在涪陵焦石坝区块的页岩气水平井压裂中成功应用,压裂后排采效果显著,多口应用井压裂后获得10×104 m3/d以上的产量,且稳产前景良好。   相似文献   

16.
压后排液作为压裂和后期生产“衔上接下”的关键一环,页岩气井压裂后返排控制参数的选择及返排制度的制定还一直处于探索阶段,返排控制参数对页岩气井返排率及气井产量的影响尚不明确,返排关井时间、返排油嘴使用和更换基本都凭经验和固定模式。通过某区大量页岩气井返排数据分析,研究了返排速度、压裂+关井期间压裂液与页岩作用对返排率和气井产量的影响,明确了页岩气井压后返排作法,研究结果表明,提高返排率有利于提高页岩气井产能,但返排率不是决定气井产能高低的关键因素;页岩气井压裂施工结束后关井有利于人工裂缝的继续扩展,提高单井产量,但关井时间过长会引起大量的压裂液滞留于地层对储层造成伤害,反而降低气井产能;提出开井初期采用慢返排模式更有利于提高返排率和单井产能,采用对“油嘴进行控制、逐级放大、连续、平稳”的排液制度。页岩气井返排规律及控制参数优化结果为该区块页岩气井压后返排控制参数的优化提供了依据。  相似文献   

17.
水平井分段水力压裂是开发页岩气藏的主要技术,但多数页岩气井压裂后压裂液返排率仅为10%~50%,潜在水相圈闭损害严重,需加大对页岩气藏水相圈闭损害的认识。以四川盆地东部龙马溪组露头页岩为研究对象,模拟压裂作业过程,利用裂缝和基质岩样开展了压裂液滤失与自吸实验,观察了页岩水相返排现象,评价了水相圈闭损害程度。实验结果表明:压裂液滤失与自吸作用将使基质含水饱和度显著增加,且在气藏压力下返排困难,从而引起基质渗透率、扩散系数以及气体压力传递能力大幅下降。分析认为,纳米孔隙发育、亲水性粘土矿物含量高以及超低含水饱和度现象普遍存在是页岩气藏水相圈闭损害严重的主因;加强返排机理研究,选择合适的表面活性剂,并采用非水基压裂液和高温热处理技术是解除或缓解水相圈闭损害的根本途径,也是页岩气井增产改造的重要发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号