首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
5 V尖晶石型LiNi0.5Mn1.5O4以其高能量密度、价格低廉、无环境污染等特点被视为最具发展潜力的锂离子电池正极材料之一。分别采用蔗糖、葡萄糖、柠檬酸3种不同碳源,通过固相混合、掺铬、球磨、高温煅烧制备出镍铬锰酸锂。通过XRD、SEM、粒度测量和电池充放电性能测试,对样品的结构、形貌、粒径、粒径分布及电性能等进行了分析。结果表明,加柠檬酸可制得粒径更细、粒径分布更窄的亚微米级的尖晶石型LiCr0.2Ni0.4Mn1.4O4,且其具有更好的电化学性能,在3.4~5.2 V、1 C下放电比容量可达149 mA·h/g,循环100次后容量保持率为98.0%。  相似文献   

2.
碳酸锂和四氧化三锰合成锰酸锂的工艺优化研究   总被引:1,自引:0,他引:1  
为了提高锰酸锂的性能,用正交实验法优化了碳酸锂和四氧化三锰固相合成尖晶石锰酸锂的工艺,并结合X射线衍射(XRD)、扫描电镜(SEM)、恒电流充放电技术研究了合成工艺对材料结构、形态、比容量和循环性能的影响.固相反应法制备锰酸锂的工艺条件为:600 ℃预烧6 h,750 ℃反应30 h,600 ℃退火6 h.所得锰酸锂在25 ℃和50 ℃下初始放电比容量为138 mA·h/g和136 mA·h/g,10次循环后容量保持率为97.8%,94.9%.  相似文献   

3.
介绍了九十年代国外兴起的一种锂离子电池用新型电极材料-锰酸锂,综述了其生产工艺、技术现状、发展前景及国外开展其研究开发的优势。  相似文献   

4.
为了解决充放电过程中锰酸锂循环性能较差的问题,采用自蔓延燃烧法制备了硅掺杂锰酸锂超细颗粒(LiMn1.95Si0.05O4,简称LMSO)。通过X射线衍射光谱、扫描电子显微镜、循环伏安法等方法研究了硅掺杂对锰酸锂晶体结构、微观形貌和电化学性能的影响。结果表明,硅掺杂不会改变锰酸锂尖晶石的结构;锰酸锂的粒径大于0.1μm,而大部分硅掺杂锰酸锂颗粒小于0.1μm。颗粒尺寸减小,缩短了锂离子的扩散路径,提高了材料的电化学性能。LMSO在0.2C倍率下放电比容量高达123.7 mA·h/g,在1C倍率下循环100次后的容量保持率为95%。  相似文献   

5.
锂离子电池正极材料锰酸锂的制备与改性研究   总被引:3,自引:0,他引:3  
锂离子电池是绿色高能可充电池,具有工作电压高、比能量大、自放电少、循环寿命长、无记忆效应、无环境污染等突出优点.尖晶石型锰酸锂正极材料具有无毒、成本低、电容量高等优点,近年来引起广泛关注.但在高温环境下,锰酸锂正极材料的充放电容量迅速下降,成为制约其发展的主要缺点.从锰酸锂的制备与改性研究方面综述了锂离子电池正极材料锰酸锂的研究进展,在此基础上,提出了正极材料锰酸锂的发展方向.  相似文献   

6.
7.
尖晶石型锰酸锂由于具有优异的安全性能且成本低廉,成为锂离子电池正极材料的研究热点。然而,由于锰溶解所导致的循环性能衰退是锰酸锂发展的主要障碍。随着温度的升高,锰溶解加剧,因而电池在高温条件下衰退更加严重。将硼酸锂包覆于锰酸锂表面,可以抑制锰的溶解。通过高能球磨的方法可将硼酸锂均匀地包覆于锰酸锂表面。X射线衍射与电化学阻抗表征结果表明,硼酸锂不会引起锰酸锂结构的变化和电池阻抗的增加。通过对界面转移电阻的研究发现,硼酸锂包覆量超过2%(质量分数)时电池的极化会增加,因此将硼酸锂的最佳包覆量控制在2%。相比于未经包覆的锰酸锂,经包覆的锰酸锂不论是对锂半电池还是对石墨全电池均表现出优异的循环性能,尤其是在60 ℃下的循环性能大大改善。软包全电池体积能量密度达到308 W·h/L,1C循环200次后容量保持率可达到94.7%。通过硼酸锂包覆可有效抑制锰酸锂的锰溶解,改善其循环性能。  相似文献   

8.
尖晶石型锰酸锂是当前锂离子正极材料的研究热点。结合笔者的研究工作,详细阐述了传统工业制法以及软化学方法的制备方法、优缺点及合成材料的电化学性能。重点综述了近几年来合成锰酸锂新的合成方法及其优势,介绍了改善锰酸锂材料循环性能煦多种方法,充分说明了锰酸锂被将广泛地用作锂离子电池正极材料巨大的应用前景。  相似文献   

9.
对锂与锰酸锂复合正极材料的合成和电化学性能进行了研究。将磷酸亚铁锂与镍钴锰酸锂按照一定质量比混合后得到复合正极材料。采用电感耦合等离子体发射光谱仪(ICP)、扫描电子显微镜(SEM)、充放电测试等方法对复合正极材料进行了表征。发现该复合材料结合了磷酸亚铁锂和锰酸锂的优点,表现出优异的电化学性能。  相似文献   

10.
镍钴锰酸锂三元材料的化学组成最初出现在20世纪90年代末期的钴酸锂和镍酸锂的掺杂研究中,其作为独立体系材料的研发开始于2001年。在该化合物中,镍呈现正二价,是主要的电化学活性元素;锰呈现正四价,不参与电化学反应,只对材料的结构稳定性和热稳定性提供保证;钴是正三价,部分参与电化学反应,其主要作用是保证材料层状结构的规整度、降低材料电化学极化、提高其倍率性能。该材料具有比容量高、高电压下结构稳定、安全性较好等优点,是目前看来最有应用前景的一种锂离子电池正极材料。  相似文献   

11.
吴显明 《精细化工》2014,31(12):1427-1430
采用重质化学二氧化锰制备尖晶石LiMn2O4。采用X射线衍射、扫描电镜、恒电流充放电等技术对合成产物进行物相、形貌和电化学分析。结果表明:采用重质化学二氧化锰与电解二氧化锰制备的LiMn2O4粉末具有相似的X射线衍射结果。采用重质化学二氧化锰制备的LiMn2O4在0.2C、0.5C、1C、2C及3C放电倍率下放电比容量分别为108.5、104.7、97.3、86.5mA·h/g和70.7mA·h/g,以电解二氧化锰为原料制备的LiMn2O4放电比容量则分别为106.1、103.4、99.1、89.2mA·h/g和75.5mA·h/g。两种原料制备的LiMn2O4在不同倍率下的比容量和充放电循环性能差别不大,采用重质化学二氧化锰制备的锰酸锂电化学性质可以达到或超过采用电解二氧化锰制备的锰酸锂。  相似文献   

12.
采用重质二氧化锰制备尖晶石LiMn2O4。采用X射线衍射、扫描电镜、恒电流充放电等技术对合成产物进行物相、形貌和电化学分析。结果表明:采用重质化学二氧化锰与电解二氧化锰制备的LiMn2O4粉末具有相似的X射线衍射结果。采用重质化学二氧化锰制备的LiMn2O4在0.2C、0.5C、1C、2C及3C放电倍率下放电比容量分别为108.5 mAh/g、104.7mAh/g、97.3mAh/g、86.5 mAh/g和70.7 mAh/g,以电解二氧化锰为原料制备的LiMn2O4放电比容量则分别为106.1 mAh/g、103.4mAh/g、99.1mAh/g、89.2mAh/g和75.5mAh/g。两种原料制备的LiMn2O4在不同倍率下的比容量和充放电循环性能差别不大,采用重质化学二氧化锰制备的锰酸锂电化学性质可以达到或超过采用电解二氧化锰制备的锰酸锂。  相似文献   

13.
采用一种溶胶凝胶法制备尖晶石锰酸锂纳米粒子并对其恒电流充放电和交流阻抗特性进行了研究。结果表明,所制备的锰酸锂材料首次放电容量达到133 mAg/g,但经过5次充放电循环后容量的衰减率超过10%。容量衰减比较快的原因可能是由于所制备的纳米尖晶石锰酸锂材料表面积大,其与电解液的反应也比较快。  相似文献   

14.
以醋酸锰、氢氧化锂为原料,以柠檬酸为络合剂,n(柠檬酸):n(锂)=1:1,采用柠檬酸辅助溶胶-凝胶法制备了富锂尖晶石Li1+xMn2O4 (x=0,0.02,0.05,0.07),采用TG-DTA、XRD、SEM分别对前驱体和目标材料进行了表征,采用恒流充放电及循环伏安(CV)测试对材料进行了电化学性能表征,考察了不...  相似文献   

15.
掺杂对尖晶石锰酸锂正极材料的影响   总被引:4,自引:0,他引:4  
合成性能好、结构稳定的正极材料锰酸锂是研究和制备有应用前景的锂离子蓄电池电极材料的关键,锰酸锂是较有前景的锂离子正极材料之一。但其较差的循环性能及电化学稳定性却大大限制了其产业化,掺杂是提高其性能的一种有效方法。掺杂有强M-O键、较强八面体稳定性且离子半径与锰离子相近的金属离子,能显著改善其循环性能。综述了阳离子掺杂、阴离子掺杂以及复合掺杂对锂锰氧化物电化学性能的影响,其中主要介绍了铬、钴、铝、镍等元素的掺杂对锰酸锂的影响。  相似文献   

16.
通过循环伏安(CV)、电化学交流阻抗谱(EIS)及恒流充放电研究锰酸锂表面的成膜性能及电化学性能。结果表明,锰酸锂表面的SEI膜在电池首次充电过程中就开始形成,充放电循环至3周时,SEI膜得到较大程度的修补和完善。但循环到一定次数后,SEI膜会逐渐变厚,直接影响电池的电化学性能。  相似文献   

17.
锂离子电池正极材料尖晶石型锰酸锂研究现状   总被引:2,自引:0,他引:2  
锂离子电池正极材料钴酸锂因价格昂贵、原料有限、污染严重、有毒性,以及其过充不安全性决定了它不可能在大容量和大功率电池中得到应用.尖晶石型锰酸锂以其良好的安全性能以及低廉的成本,成为了锂离子电池在动力领域替代钴酸锂的理想的正极材料.综述了锂离子电池正极材料尖晶石型锰酸锂的制备方法、存在的问题以及解决方案.同时对尖晶石型锰酸锂作为锂离子动力电池正极材料的发展趋势进行了展望.  相似文献   

18.
以Mn3O4和MnO2为原料,采用高温固相内氧法制备LiMn2O4电池正极材料。通过对LiMn2O4的振实密度、粒度分布、比容量、循环性能、结构及形态等各项理化性能进行检测分析,结果表明:在烧结温度为750℃,Mn3O4和MnO2的摩尔比为3∶1的条件下,所制备的锰酸锂电化学性能最佳,其振实密度为1.84 g/cm3,比表面积为0.698 cm2/g, D50粒径为16.567μm, 1C放电容量为122.65 mAh/g, 50次循环容量保持率为94.02%。  相似文献   

19.
万传云  吴頔  罗彦飞 《硅酸盐通报》2011,30(5):1064-1067
本文以氢氧化锂、醋酸锰及碳酸锰为原料,采用液相法合成凝胶浆料和半固相浆料,利用喷雾干燥法获得球形锰酸锂前驱体,研究了动态焙烧喷雾干燥前驱体制备球形锰酸锂正极材料用于锂离子电池.研究结果显示,动态低温分解与高温分解相结合的方法能有效保持前驱体的球形,合成的球形锰酸锂具有良好的电化学性能.该方法适合于工业化生产球形锂离子电池正极材料.  相似文献   

20.
将电解二氧化锰(EMD)分别与化学二氧化锰(CMD)、碳酸锰及三氧化二锰混合作为锰源材料制备锰酸锂。用X射线衍射(XRD)、扫描电镜(SEM)等研究了不同混合锰氧化物制备的锰酸锂的结构及形貌,通过充放电性能检测分析了不同混合锰源材料对锰酸锂电化学性能的影响。结果表明,合成的锰酸锂均为规则的立方晶体结构,以EMD和碳酸锰的混合物作为锰源材料制备的锰酸锂晶格常数最小,晶体结构最稳定,颗粒大小分布均匀,各倍率下的放电比容量均最高,同时也表现出优良的循环性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号