首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Microemulsion formation of triglyceride oils at ambient conditions (temperature and pressure) and without the addition of co-oil and/or alcohols is challenging at best. Undesirable phases, such as macroemulsions, liquid crystals and sponge phases, are often encountered when formulating triglyceride microemulsions. The purpose of this study is to investigate the use of extended surfactants, lipophilic linkers, and hydrophilic linkers in enhancing triglyceride solubilization and interfacial tension reduction. We have studied two classes of extended surfactants, linear alkyl polypropoxylated sulfate (LAPS) surfactants and linear alkyl polypropoxylated ethoxylated sulfate (LAPES) surfactants. Linkers evaluated were oleyl alcohol (lipophilic linker), sodium mono and dimethyl naphthalene sulfonate (SMDNS), and polyglucoside (hydrophilic linkers). Oils studied include olive, peanut, soybean, canola and sunflower oils. The effect of electrolyte concentration on microemulsion phase behavior was studied. The microemulsion “fish” diagram was obtained by plotting the total surfactant and linker concentrations versus the electrolyte concentration. We were able to form Winsor Type I, II, III and IV microemulsions at ambient conditions and without co-oil or short and medium chain length alcohol addition. Winsor Type III and IV triglyceride microemulsions are particularly useful in numerous applications such as cosmetics, vegetable oil extraction and soil remediation.
David A. Sabatini (Corresponding author)Email:
  相似文献   

2.
The effect of surfactant concentration on the occurrence and detection of transient ultralow interfacial tension (IFT) between crude oil and formation water at 75 °C has been investigated using a series of novel sodium alkyl ether sulfonates having various increasing molecular weights and degrees of ethoxylation. All surfactant systems displayed dynamic interfacial tension (DIT). Transient ultralow DIT (DITmin) were detected only within an intermediate surfactant concentration. This behavior was attributed to an implicit concentration-related length scale required for the added surfactant to diffuse from the bulk phase to the freshly prepared oil–water interface. In the high surfactant concentration range, this length scale is relatively short and results in an instantaneous (and undetectable) occurrence of DITmim in a relatively very short time scale, well beyond the detection limit of the spinning drop tensiometer (~2–3 min). Interestingly, DITmin were detected only in systems above the surfactant’s critical micelle concentration, suggesting that DITmin occurs as a result of the diffusion (subsequent to the adsorption) of the oil acidic species from the interface to the bulk phase to form mixed micelles with the added surfactant. Measurements of DITs in the presence of decane showed no evidence for DITmin, confirming the general belief that DITmin is indeed due to the interaction of the added surfactant with the oil acidic components. Finally, the effect of surfactant concentration on the equilibrium IFT (γeq) showed evidence for relatively low values (~10−2 mNm−1) for some surfactant systems.  相似文献   

3.
Along a formulation scan, solubilization is maximal when a bicontinuous microemulsion is in equilibrium with both oil and water excess phases in a so-called Winsor III system. The logical way to enhance solubilization is to increase the interaction of the surfactant for both the oil and water phases, which can be easily attained by increasing the size of both the head and tail groups. However, this approach is limited by solubility constraints. Additional solubilization enhancement can be attained by introducing a molecule(s) that bridge the bulk phase and the adsorbed surfactant layer; this can be accomplished by using the so-called lipophilic and hydrophilic “linker effect” or by using block copolymer additives. In either case, the goal is to modify an extended zone in the oil and water domains close to their boundary. The intramolecular grafting of a linker group between the hydrophilic and lipophilic moieties in a surfactant results in a so-called “extended” surfactant structure, which produces enhanced solubilization, as does the surfactant/linker combination, but with the added benefit that the self-contained extended surfactant structure does not undergo selective partitioning. We conclude that an improvement in solubilization is directly related to the presence of a smooth, blurred, and expanded transition across the interfacial region from polar to apolar bulk phases.  相似文献   

4.
The ultimate objective of the project was to investigate the relationship between microemulsion phase behavior and detergency for oily soils. In this study, surfactant phase behavior was evaluated for hexadecane and motor oil as model oily soils. Producing microemulsions with these oils is particularly challenging because of their large hydrophobic character. To produce the desired phase behavior we included three surfactants with a wide range of hydrophilic/lipophilic character: alkyl diphenyl oxide disulfonate (highly hydrophilic), dioctyl sodium sulfosuccinate (intermediate character), and sorbitan monooleate (highly hydrophobic). This mixed surfactant was able to bridge the hydrophilic/lipophilic gap between the water and the oil phases, producing microemulsions with substantial solubilization and ultralow interfacial tension. The effects of surfactant composition, temperature, and salinity on system performance were investigated. The transition of microemulsion phases could be observed for both systems with hexadecane and motor oil. In addition, the use of surfactant mixtures containing both anionic and nonionic surfactants leads to systems that are robust with respect to temperature compared to single-surfactant systems. Under conditions corresponding to “supersolubilization”, the solubilization parameters and oil/microemulsion interfacial tensions are not substantially worse than at optimal condition for a middle-phase system, so a middle-phase microemulsion is not necessary to attain quite low interfacial tensions. A potential drawback of the formulations developed here is the fairly high salinity (e.g., 5 wt% NaCl) needed to attain optimal middle-phase systems. The correlation between interfacial tension and solubilization follows the trend predicted by the Chun-Huh equation.  相似文献   

5.
The effects of different types of polymers, partially hydrolyzed polyacrylamide (HPAM) and hydrophobically modified polyacrylamide (HMPAM), on dynamic interfacial tensions (IFTs) of surfactant/model oil systems have been investigated by the spinning drop method in this article. Two anionic surfactants, 1,2‐dihexyl‐4‐propylbenzene sulfonate (366), 1,4‐dibutyl‐2‐nonylbenzene sulfonate (494) and an anionic–nonionic surfactant octyl‐[ω‐alkyloxy‐poly(oxyethylene)]yl‐benzene sulfonates (828) with high purity were selected as model surfactants. The influences of polymer concentration on IFT were expounded. It was found that the addition of polymer mostly results in increasing IFT because the interfacial molecular arrangement is modified owing to the interaction between polymer and surfactants. For HPAM, the polymer chains will enter the surfactant adsorption layer to form mixed‐adsorption layer. Therefore, HPAM shows strong effect on surfactant molecules with large size, such as 366. Conversely, surfactants can interact with the hydrophobic blocks of HMPAM and form mixed micelle‐like associations at interface. As a result, HMPAM shows more impact on IFT of 494 due to small steric hindrance for the formation of interfacial associations. This mechanism has been ensured by 828 molecules with two long alkyl chains. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40562.  相似文献   

6.
Previously, we reported on the use of hydrophilic and lipophilic linker molecules to enhance the solubilization capacity of chlorinated hydrocarbons using sodium dihexyl sulfosuccinate (SDHS). In this work we extend the use of linker molecules to a wider range of oils and surfactants. The data show that the linker effect works for all the systems studied and that linker-based systems are even more economical than surfactant-only systems for more hydrophobic oils. Using a more hydrophobic surfactant, such as sodium bis(2-ethyl)dihexyl sulfosuccinate (Aerosol-OT), requires a formulation enriched with a hydrophilic linker, whereas the formulation for the more hydrophilic SDHS requires the use of a more lipophilic linker. By considering the properties and appearance of the formulation before contacting with the oil, and by evaluation the coalescence dynamics, we found that hydrophilic linker-rich formulations were preferred. These formulations were tested as fabric pretreatments for removing motor oil and hexadecane from cotton, and as flushing solutions for glass bead columns contaminated with these oils. The cleaning performance of these linker-based systems was superior to common surfactant and pretreatment formulations in the detergency tests, achieving more than 80% removal of motor oil and hexadecane trapped in the packed-column flushing tests.  相似文献   

7.
The dynamic interfacial tension (IFT) of ethoxylated fatty acid methyl ester solutions against n‐alkanes, kerosene, and diluted heavy oil have been investigated by spinning drop interfacial tensiometry. The influences of ethylene oxide (EO) groups and alkyl chain length on IFT were investigated. The experiment results show that the water solubility decreases with an increase in alkyl chain length or a decrease in EO groups. The ability to lower the interfacial tension against hydrocarbons improves with both increasing alkyl chain length and EO group at the best hydrophilic‐lipophilic balance, which can be attributed to the enhancement of the interfacial hydrophobic interactions and the rearrangement of interfacial surfactant molecules. The mixed adsorption of surfactant molecules and surface‐active components may reduce IFT to a lower value. C18=E3 shows the best synergism with surface‐active components. However, the IFT values against pure crude oil are obviously higher than those against hydrocarbons, which may be caused by the nature of heavy oil.  相似文献   

8.
《Fuel》2005,84(12-13):1607-1611
This paper is concerned with the study of the effect of the molecular structure of surfactant on the reduction of interfacial tension of Enhanced Oil Recovery (EOR). The interfacial tension behavior of nonane and crude oil with three hexadecylbenzene sulfonate isomers (with benzene rings located at different positions along the alkyl chains) were investigated. It was found that the interfacial tensions could be reduced to ultra-low values at low alkali concentrations by using a surfactant molecule with a phenyl group located near the center of the alkyl chain. Molecular structures of this kind were considered to be the most ideal for surfactant flooding. Moreover, the transient low interfacial tensions in crude oil/alkali system were caused by the synergistic effects between surfactant and the active species generated at interface, but surfactant molecules played the dominant role at equilibrium.  相似文献   

9.
Inspired by the concept of lipophilic and hydrophilic linkers, extended surfactants have been proposed as highly desirable candidates for the formulation of microemulsions with high solubilization capacity and ultralow interfacial tension (IFT), especially for triglyceride oils. The defining characteristic of an extended surfactant is the presence of one or more intermediate-polarity groups between the hydrophilic head and the hydrophobic tail. Currently only limited information exists on extended surfactants; such knowledge is especially relevant for cleaning and separation applications where the cost of the surfactant and environmental regulations prohibit the use of concentrated surfactant solutions. In this work, we examine surfactant formulations for a wide range of oils using dilute solutions of the extended surfactant classes sodium alkyl polypropyleneoxide sulfate (R-(PO) x −SO4Na), and sodium alkyl polypropyleneoxide-polyethyleneoxide sulfate (R-(PO) y -(EO) z −SO4Na). The IFT of these systems was measured as a function of electrolyte and surfactant concentration for polar and nonpolar oils. The results show that these extended surfactant systems have low critical micelle concentrations (CMC) and critical microemulsion concentrations (CμC) compared with other surfactants. We also found that the unique structure of these extended surfactants allows them to achieve ultralow IFT with a wide range of oils, including highly hydrophobic oils (e.g., hexadecane), triolein, and vegetable oils, using only ppm levels of these extended surfactants. It was also found that the introduction of additional PO and EO groups in the extended surfactant yielded lower IFT and lower optimum salinity, both of which are desirable in most formulations. Based on the optimum formulation conditions, it was found that the triolein sample used in these experiments behaved as a very polar oil, and all other vegetable oils displayed very hydrophobic behavior. This unexpected triolein behavior is suspected to be due to uncharacterized impurities in the triolein sample, and will be further evaluated in future research.  相似文献   

10.
Alkali surfactant polymer (ASP) flooding is an enhanced oil recovery (EOR) technology with an impressive potential for increasing incremental oil production from conventional hydrocarbon bearing reservoirs. A challenge to ASP application is the complexity of determining an effective formulation, typically requiring extensive laboratory screening of nearly countless combinations of surfactants and cosolvents. This paper focuses on demonstrating the utility of the hydrophilic–lipophilic deviation (HLD) concept for EOR application to simplify surfactant formulation workstreams seeking an economically viable ASP formulation for field application. In describing work performed for EOR application of ASP under customer conditions using crude oil, the discussion covers the initial evaluation of the promising surfactant formulation (interfacial tension and solubility), the improvement upon the formulation via HLD principles, and the evaluation of the improved surfactant formulation (coreflood studies). The final ASP formulation identified consisted of a 9 to 1 mixture of alkyl propoxy sulfate sodium salt (APS) to alkyl ethoxy sulfate sodium salt (AES) totaling 2000 ppm active surfactant content, 2.0 wt% Na2CO3, and 3000 ppm polyacrylamide polymer (all commercially available products). This formulation had ultra-low interfacial tension and favorable mixing behavior under reservoir conditions. In coreflood studies, the final formulation reproducibly achieved cumulative oil recovery of 96.4%–98.5% of original oil in place with only 0.3 PV of ASP injection with a chase alkali polymer injection.  相似文献   

11.
Surface and interfacial tension and detergency of mixtures containing oxyethylated methyl dodecanoate and sodium dodecylbenzenesulfonate were determined. Synergism in the surface tension reduction was not observed. The competition for adsorption at the air/water interface between oxyethylated methyl dodecanoate and sodium dodecylbenzenesulfonate depended on the considered surface tension, the weight ratio of surfactants in the aqueous phase, and the hydrophile-lipophile balance of the nonionic surfactant. Generally, coverage of the interface with oxyethylated methyl dodecanoate increased when surface tension decreased. Nonionics were the dominant species at the interface in the important region of surface activity, i.e., for surface tensions below 40 mN m−1. The mole fraction of the hydrophobic nonionic at the interface was higher than the contribution of hydrophilic oxyethylates. An increase of the surfactant ratio in the bulk phase affects the interfacial ratio of surfactants in the same way. The lowest interfacial tension (1.5 mN m−1) at the hexadecane/water interface was observed for oxyethylated methyl dodecanoate having an average degree of oxyethylation equal to 8 and 10. Nearly 5 min was needed to achieve equilibrium value. Mixtures with sodium dodecylbenzenesulfonate decreased the interfacial tension somewhat less efficiently but the equilibrium was rapidly established. The standard washing powders containing oxyethylated methyl dodecanoates exhibited washing ability similar to that obtained for the powder with traditional alcohol oxyethylate.  相似文献   

12.
A Couette-type torsion wire surface shear viscometer was used to measure the apparent interfacial shear viscosity of pH 7 (I=0.05 M) buffered solutions of sodium caseinate in contact with sunflower oil. The sunflower oil contained 1% fat crystals in either the β or β′ polymorphic form, or was crystal free. In all cases, the fat crystals increased the interfacial shear viscosity synergistically, with the β′ crystals causing the biggest increase. Substituting the protein for a small-molecule surfactant (Tween-40) showed that this was not simply due to the protein lowering the interfacial tension. Sedimentation studies of the different fat crystal slurries suggested that the extent of the interfacial shear viscosity increase was related to the strength of crystal-crystal interactions in the oil phase. It seems likely that when protein is present at the interface, it fixes the adsorbed layer of fat crystals to the cross-linked protein film at the interface. When this film was sheared, the strength of the crystal-crystal interactions in the oil phase became important. However, when Tween-40 was in the aqueous phase instead of the protein, the crystal-crystal interactions were not relevant, presumably because the Tween-40 interfacial film simply flowed around the adsorbed crystals  相似文献   

13.
The polarity of rhamnolipid, a relatively hydrophilic biosurfactant, can be enhanced by the addition of linker molecules. In this work, rhamnolipid biosurfactant‐modified surfaces were prepared with and without a combination of linkers (1‐butanol, 1‐octanol, and 1‐dodecanol) to investigate effects of linker molecules on styrene adsolubilization and solubilization. Results showed that styrene adsolubilization increased with increasing carbon chain lengths of the linker molecules whereas the solubilization of styrene exhibited the opposite effect. Decreasing the carbon atoms in the linker molecules resulted in higher styrene solubilization capacity because of the change in polarity of the three‐dimensional surfactant aggregates. The higher adsolubilization capacity indicated the enlargement of surfactant tails that was created a larger adsolubilization region in the admicelle while the lesser solubilization of styrene indicated the decreasing of affective area per molecule of the surfactant‐linker system (butanol > octanol > dodecanol).  相似文献   

14.
Summary Nanocapsules were prepared by interfacial polycondensation of an oil-soluble monomer (phthaloylchloride) and a hydrophilic monomer (diethylentriamine). Upon addition of the oil phase to the aqueous phase, interfacial reaction takes place at the interface of an oil in water submicronic emulsion. After the initial formation of the wall, the polycondensation is diffusion controlled. The influence of different variables on nanocapsules size was evaluated. Oil (Miglyol? 812) concentration played an important role by controlling the size of the emulsified droplets (precursor of nanocapsules). Ratio of lipohilic to hydrophilic monomer showed a significant effect on the size, indicating that polymeric walls of difference thicknesses can be obtained. The introduction of a lipohilic surfactant (Lipoid? S75) and a hydrophilic surfactant (Pluronic?F68) in the formulation is important for the stability of nanocapsules after their preparation. Received: 16 May 2002/Revised version: 28 November 2002/ Accepted: 12 March 2003 Correspondence to S. Brian?on  相似文献   

15.
The use of hexane to extract vegetable oil from oilseeds is of growing concern due to hexane’s environmental impact and because of worker exposure concerns. The goal of our work is to demonstrate that the aqueous extended-surfactant-based method is a viable alternative for vegetable oil extraction. In our method, ground oilseeds were dispersed in the aqueous surfactant solution, allowing the oil to be liberated from the seeds as a separate phase from the aqueous phase. The impact of pH, shaking intensity, shaking time and seed to liquid ratio on oil yield are presented. Extended-surfactants are a new type of surfactant with propoxylate (PO) and/or ethoxylate (EO) groups inserted between the hydrophilic head and the hydrophobic alkyl chain of the surfactant molecule. This unique structure of extended-surfactants enables them to produce ultralow interfacial tension with vegetable oils. We have found that at low aqueous concentrations (less than 0.3 wt%), extended-surfactant solutions are able to produce ultralow interfacial tension between aqueous extraction and vegetable oil phases. At optimum condition (seed to liquid ratio of 1–5, 30 min extraction at 150 shakes/min and 30 min centrifugation at 2,170×g) we achieved 93–95% extraction efficiency for peanut and canola oils at 25 °C. The oil quality produced from the aqueous extended-surfactant-based method was found to be comparable or even superior to that obtained from hexane-based extraction, further demonstrating the viability of aqueous extended-surfactant based extraction.  相似文献   

16.
《Fuel》2006,85(12-13):1815-1820
The surface tensions of various surfactant aqueous solution and the dynamic interfacial tensions between the Shengli oil field of China crude oil and the solution of novel surfactants, a series of single-component alkylmethylnaphthalene sulfonates (AMNS) including various the length of alkyl chains (hexyl, octyl, decyl, dodecyl and tetradecyl, developed in our laboratory), were measured. It is found that synthesized surfactants exhibited great capability and efficiency of lowering the solution surface tension. The critical micelle concentrations, CMC were: 6.1–0.018×10−3 mol L−1, and the surface tensions at CMC, γCMC were: 28.27–35.06 mN m−1. It is also found that the added surfactants are greatly effective in reducing the interfacial tensions and can reduce the tensions of oil–water interface to ultra-low, even 10−6 mN m−1 at very low surfactant concentration without alkali. The addition of salt, sodium chloride, results in more effectiveness of surfactant in reducing interfacial tension and shows that there exist obviously both synergism and antagonism between the surfactant and inorganic salt. All of the synthesized surfactants, except for hexyl methylnaphthalene sulfonate, can reduce the interfacial tension to ultra-low at an optimum surfactant concentration and salinity. Especially Tetradec-MNS surfactant is most efficient on lowering interfacial tension between oil and water without alkaline and the other additives at a 0.002 mass% of very low surfactant concentration. Both chromatogram separation of flooding and breakage of stratum are avoided effectively, in addition to the less expensive cost for enhanced oil recovery, and therefore it is a good candidate for enhanced oil recovery.  相似文献   

17.
This article is a continuation of our first study on dilational interfacial rheology properties at optimum formulation for surfactant-oil–water systems at low surfactant concentration just above the cμc. Here, we have investigated a high content of middle-phase microemulsion with an optimum WIII phase behavior for a system containing sodium dodecyl sulfate, n-pentanol, and kerosene. A new oscillating spinning drop interfacial rheometer was used to measure the interfacial properties. The very low dilational elasticity moduli and phase angle found at or near hydrophilic–lipophilic deviation (HLD) = 0 are related to the presence of the bicontinuous phase microemulsion and to the fast surfactant exchanges between the bulk and the interface, regardless of the phases involved in the measurement using the spinning drop apparatus, i.e., the two-phase excess oil and excess water (O-W) or the bicontinuous microemulsion and excess water (M-W). We show that at or near optimum formulation, the interfacial tension and the dilational modulus for the M-W case almost instantly reach equilibrium, because of the high surfactant content in the microemulsion and the fast exchanges between the bulk and the interface. In contrast, when both excess phases (O-W) are measured, the changes in these properties are slower, due to the scarce presence of surfactants in both phases. The possibility of having almost all the surfactants trapped in the middle-phase bicontinuous microemulsion could explain the emulsion instability in all the WIII range. This is behaving as if there were no surfactant available in the oil and water phases to stabilize the oil or water droplets thus formed.  相似文献   

18.
A series of reverse Y‐shaped surfactants containing aromatic and aliphatic linkers to combine two short hydrocarbon chains and one carbohydrate head group was prepared. Liquid crystalline behavior, air–water interfacial properties, and efficiency as an emulsifier was investigated for each reverse Y‐shaped surfactant. All reverse Y‐shaped surfactants mediated higher emulsion stabilities for water‐in‐oil compared to common typical reference surfactants, reflecting an improved ability to cope with a curvature towards water. The introduction of a benzene ring into the linker substantially increased the affinity of the surfactant for hydrophobic media, resulting in improved emulsion stability for both water‐in‐oil and oil‐in‐water.  相似文献   

19.
以硬脂酸和己酸为原料合成了不对称双长链烷基羧基甜菜碱——十八烷基己基甲基羧基甜菜碱(C18+6B),测定了C18+6B的表面活性,并与总碳原子数相等的对称型双十二烷基甲基羧基甜菜碱(di C12B)进行比较,以了解表面活性剂分子结构对性能的影响。结果表明,C18+6B的表面活性与di C12B基本相当,但水溶性远好于di C12B。作为无碱驱油用表面活性剂,C18+6B对大庆原油来说HLB值略偏高,45℃下单独使用能将大庆原油/地层水界面张力降至10-2m N/m数量级,在大庆油砂上的饱和吸附量比di C12B低30%。C18+6B单独能将C7~C9正构烷烃/大庆地层水界面张力降至10-3m N/m数量级,而通过与亲油性更强的di C12B以及亲水性甜菜碱复配后,能将大庆原油/地层水界面张力降至10-3m N/m数量级,并能显著改善配方的水溶性。  相似文献   

20.
以硬脂酸和己酸为原料合成了不对称双长链烷基羧基甜菜碱——十八烷基己基甲基羧基甜菜碱(C18+6B),测定了C18+6B的表面活性,并与总碳原子数相等的对称型双十二烷基甲基羧基甜菜碱(diC12B)进行比较,以了解表面活性剂分子结构对性能的影响。结果表明,C18+6B的表面活性与diC12B基本相当,但水溶性远好于diC12B。作为无碱驱油用表面活性剂,C18+6B对大庆原油来说HLB值略偏高,45 ℃ 下单独使用能将大庆原油/地层水界面张力降至10-2mN/m数量级,在大庆油砂上的饱和吸附量比diC12B低30%。C18+6B单独能将C7~C9正构烷烃/大庆地层水界面张力降至10-3mN/m数量级,而通过与亲油性更强的diC12B以及亲水性甜菜碱复配后,能将大庆原油/地层水界面张力降至10-3mN/m数量级,并能显著改善配方的水溶性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号