共查询到19条相似文献,搜索用时 46 毫秒
1.
将小波分析与径向基函数(简称RBF)神经网络相结合,构建了基于智能算法的深基坑沉降预测模型(简称WRPM)。根据深基坑工程的施工特点,借助WRPM分析了影响沉降的主要因素,研究了基坑沉降机理,提取了沉降的真实信号并对沉降变形进行了预测。工程实例分析表明,WRPM模型用于深基坑沉降预测,具有精度高、泛化能力强等特点,能够为深基坑工程的安全施工提供依据。 相似文献
2.
深支坑围护体的土压力与支护体的变形及位移密不可分,从变形及位移的角度,考虑支护与土体的共同作用,分析土压力分布及围护体支撑内力。 相似文献
3.
针对BP神经网络学习时间长、收敛速度慢等缺陷,借助小波分析理论,将母小波平移和伸缩构成的小波基作为神经网络的激励函数,通过指导网络的初始化和参数选取,使网络以较简单的拓扑结构实现函数逼近,利用网络训练建立起承载力与其影响因素之间的非线性关系。在相同结构和参数下,与BP神经网络进行分析对比。结果表明:利用小波变换对数据时频局域化分析的能力并结合人工神经网络的自学习功能,使得小波神经网络预测模型具有较强的逼近和容错能力,预测结果比传统的BP神经网络具有更快的收敛速度和更高的精度。 相似文献
4.
针对BP神经网络学习时间长、收敛速度慢等缺陷,借助小波分析理论,将母小波平移和伸缩构成的小波基作为神经网络的激励函数,通过指导网络的初始化和参数选取,使网络以较简单的拓扑结构实现函数逼近,利用网络训练建立起承载力与其影响因素之间的非线性关系.在相同结构和参数下,与BP神经网络进行分析对比.结果表明:利用小波变换对数据时... 相似文献
5.
小波神经网络在高陡边坡位移预测中的应用 总被引:3,自引:0,他引:3
阐述小波神经网络模型法的基本原理与程序实施步骤,探讨了高陡边坡监测数据与小波神经网络间的联系,建立了基于小波神经元网络的高陡边坡预报模型.以工程实例为背景,对高陡边坡位移进行预测预报,并与其它方法对比分析.研究表明:小波神经网络具有较好的函数逼近能力和容错能力,经过选取恰当的网络参数,较少的级数项组成的小波神经网络就能达到良好的预测效果. 相似文献
6.
以郑州市郑东新区邮政大楼地下室深基坑工程为例,建立Verhulst模型,借助MATLAB软件的数值计算、绘图功能,对深基坑坑周土体水平位移量进行预测,并将该预测结果与GM(1,1)模型预测结果及实测数据进行对比分析.结果表明,Verhulst模型预测精度达到了一级,优于传统的GM(1,1)模型,对于预测类似基坑工程水平位移量有借鉴作用. 相似文献
7.
基于遗传算法的小波神经网络交通流预测 总被引:1,自引:0,他引:1
城市交通流的运行存在着高度的复杂性、时变性和随机性,实时准确的交通流预测是智能交通系统,特别是先进的交通管理系统与先进的出行者信息系统研究的关键.基于交通流预测的特点,给出了基于遗传算法的小波神经网络的交通预测模型GA-WNN,用具有自然进化规律的遗传算法来对小波神经网络的连接权值和伸缩平移尺度进行前期优化训练,部分代替了小波框架神经网络中按单一梯度方向进行参数优化的梯度下降法,克服了单一梯度下降法易陷入局部极小和引起振荡效应等缺陷.仿真实验验证了GA-WNN预测模型对短时交通流的预测的有效性. 相似文献
8.
要对非线性趋势房地产价格指数进行预测,就必须利用模拟非线性的模型。应用BP神经网络来对房地产价格指数进行预测,精度和收敛的速度都不是很理想,这主要是因为BP神经网络本身存在着缺陷。为了克服BP神经网络的缺陷,本文将小波变换和BP神经网络结合起来,运用小波神经网络来对房地产价格指数进行预测,并与BP网络的预测结果进行了比较,最后发现用小波神经网络进行经济预测可以达到很好的效果。 相似文献
9.
根据工程经验较全面地分析和总结了影响深基坑围护变形的主要因素,采用层次分析法建立了深基坑围护变形的评价指标体系,并列出评价体系的量化标准.选取杭州市钱江新城区域某深基坑工程作为实例,利用工程数据对建立的模型进行训练与验证,最终确定了48个网络模型以预测不同深度下围护结构深层土体的水平位移.最后,在另一深基坑工程中两个测斜孔不同工况下,利用建立的BP神经网络模型分别预测深基坑围护产生的深层土体水平位移,为工程安全建设提供依据. 相似文献
10.
基于小波神经网络的某边坡预测研究 总被引:1,自引:0,他引:1
边坡的地表位移监测是滑坡安全监控中的重要内容,对监测资料进行及时、合理和有效的分析,获取滑坡变形规律和安全状况是滑坡监测的重要工作之一。文章将基于BP算法的小波神经网络预测模型引入变形监测预报中,对工程实例进行了预测。结果表明小波神经网络预测可以取得良好的效果,且自适应预测能力较强。 相似文献
11.
《武汉大学学报(工学版)》2015,(4):584-590
智能变电站过程层网络流量一旦发生异常,将直接影响继电保护动作的可靠性、快速性和灵敏性,然而目前缺乏针对智能变电站网络流量异常预警的方法.基于此,提出一种基于改进粒子群小波神经网络的网络流量预测模型,为智能变电站网络性能分析预测、网络故障和病毒入侵预警提供决策依据.分析智能变电站网络流量的特点,对流量数据进行归一化处理,建立小波神经网络预测模型,利用粒子群优化算法对传统的小波神经网络模型的网络结构和参数进行优化.在实际智能变电站运行环境中的实验表明,所提模型预测精度高,收敛速度快,提高了智能变电站网络流量预测的准确性和快速性,保障电网安全运行. 相似文献
12.
为对畸形波这类突发性事件进行较为准确的预报,避免畸形波对海上建筑物和人员安全产生的巨大危害.采用紧致型小波神经网络模型,根据某岛礁地形实测数据建立的岛礁三维模型中测得的波高试验数据,选取试验数据中3种典型波高时间序列分别实现了包含畸形波的波浪数据对常规波浪的预报、包含近似畸形波的波浪数据对畸形波的预报以及常规波浪对包含... 相似文献
13.
为了进一步提高雷暴预报的准确率,在分析研究雷暴预报方法的基础上,提出了一种了基于改进遗传算法优化小波神经网络的雷暴预报方法(IGAWNN).该方法利用聚类分析和牛顿迭代法对多种群遗传算法的收敛方向和精度进行改进,避免了种群同质化与局部最优问题,采用改进的遗传算法对小波神经网络的初始权值阈值进行了优化.选用南京地区2008—2009年6—8月的探空和闪电定位资料,使用灰关联法挖掘出关联程度较大的对流参数作预报因子,归一化处理后输入模型,采用独立样本进行预报检验.结果表明,与BP神经网络等方法相比,IGA-WNN预报准确率更高,具有更好的非线性处理能力和泛化性. 相似文献
14.
针对深海机器人推进电机系统易出现混沌现象,直接危及其稳定运行这一现状,提出一种有效的预测方法对混沌现象进行分析,实现对混沌的预先控制.利用相空间重构与小波神经网络相结合的方法对深海机器人推进电机系统的混沌现象进行分析研究,与以往单纯利用小波神经网络进行预测相比,通过相空间重构可以为小波神经网络的输入提供较为准确、可靠的数据样本,使得预测结果具有较强的可靠性和实用性,同时解决了小波神经网络不能进行中长期准确预测的问题,为进一步研究混沌控制和混沌抑制提供了基础条件. 相似文献
15.
基于遗传算法的小波神经网络交通流预测 总被引:3,自引:0,他引:3
城市交通流的运行存在着高度的复杂性、时变性和随机性,实时准确的交通流预测是智能交通系统,特别是先进的交通管理系统与先进的出行者信息系统研究的关键. 基于交通流预测的特点,给出了基于遗传算法的小波神经网络的交通预测模型GA WNN,用具有自然进化规律的遗传算法来对小波神经网络的连接权值和伸缩平移尺度进行前期优化训练,部分代替了小波框架神经网络中按单一梯度方向进行参数优化的梯度下降法,克服了单一梯度下降法易陷入局部极小和引起振荡效应等缺陷. 仿真实验验证了GA WNN预测模型对短时交通流的预测的有效性. 相似文献
16.
马晓博 《电力科学与技术学报》2015,(2):92-97
风电功率预测的准确性对风电大规模接入的电力系统安全稳定运行具有重要意义。提出一种基于小波变换和BP神经网络的风电功率预测模型,通过小波变换将风电功率序列在不同频率上进行分解,对分解后的单支序列分别采用相匹配的BP神经网络进行建模和预测,最后,叠加各序列的预测结果得到完整的预测值。基于该模型的内蒙古某风电场输出功率预测算例结果表明:该模型可以有效提高预测精度。 相似文献
17.
基于小波神经网络的时间序列预报方法及应用 总被引:13,自引:0,他引:13
传统的时间序列预测模型在处理具有非线性特性或非平稳时间序列问题,特别是对有人参与的主动系统、社会经济系统的预测上,无法取得满意的预测效果.寻求处理这类系统的方法是人们一直努力的方向.这里以小波理论为基础,重点研究了小波网络在非线性时间序列中的建模预测方法,利用深圳综合指数数据,建立了股票指数预测模型.该模型克服了传统的时间序列预测模型仅局限于线性系统的情况,避免了BP神经网络模型固有的缺陷.仿真结果表明,该方法比神经网络预测方法的预测精度高,可以很好地应用于某些非线性时间序列的预测中. 相似文献
18.
针对已有基于改进动态递归神经网络预测方法的不足,并充分考虑交通流本身所存在的复杂性、非线性和不确定性特点,提出了一种基于可变增益Elman神经网络的交通量短时预测方法。该方法通过引入一个基于实时误差分析的可变增益因子,实现了网络的实时更新。通过长春市人民大街的实测数据对方法进行了验证。试验结果表明,本文方法在网络收敛时间和预测精度方面均优于已有的基于Elman神经网络的预测模型。 相似文献
19.
基于小波和神经网络拱坝变形预测的组合模型研究 总被引:5,自引:0,他引:5
传统方法只能近似地描述拱坝变形与各影响因子之间的关系.文章以小波变换提取影响大坝变形的主要影响因子———温度与水位的有效信息和大坝变形信息一起作为输入,实测变形值作为输出,通过对模型的合理优化和有效的数据处理,成功建立了拱坝变形的BP监控预测分析网络模型.通过模型的运算,得出了满意的结果,并且模型的预测精度较高. 相似文献