首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A nearly pure, dense, polycrystalline bulk Ti3AlC2 sample was prepared by reactively hot pressing the element titanium, aluminum, and graphite powders. The tribophysical properties were investigated by sliding a Ti3AlC2 block dryly against a low-carbon steel disk. It was found that the friction coefficient is as low as ∼0.1, and the wear rate of Ti3AlC2 is only ∼2.5 × 10−6 mm3/N·m for the highest sliding speed of 60 m/s and the largest normal pressure of 0.8 MPa. These unusual properties are attributable to the presence of a compact self-generating film, which covers uniformly over the friction surface of Ti3AlC2 with a thickness of ∼0.5 μm.  相似文献   

3.
Titanium silicon carbide (Ti3SiC2) and Ti3SiC2-based composite powders were synthesized by isothermal treatment in an inert atmosphere as a function of initial compositions (mixtures). A high content of TiC was obtained in the final product when the initial mixtures contained free carbon. The use of TiC as a reagent was unsuccessful in obtaining Ti3SiC2. High Ti3SiC2 conversion was found for the initial mixtures containing SiC as the main source for silicon and carbon. An initial mixture with a large excess of silicon, 3Ti/1.5SiC/0.5C, was needed to obtain high-purity Ti3SiC2. A reaction mechanism, where Ti3SiC2 nucleates on Ti5Si3C crystals and grows by long-range diffusion of Ti and C, is proposed. The reaction mechanism was proposed to be based on silicon loss during the formation of Ti3SiC2.  相似文献   

4.
A near-single-phase Ti3AlC2 ternary carbide was synthesized from 3Ti–1.1Al–1.8C powder blend, both by the wave propagation and thermal explosion (TE) modes of self-propagating high-temperature synthesis. The application of a moderate (28 MPa) pressure immediately after TE at 800°C (reactive forging) yielded a 95% dense material containing, in addition to Ti3AlC2, an appreciable amount of TiC1− x . By adjusting the starting composition, a 99% dense material containing up to 90 vol.% Ti3AlC2 was obtained. The material had a fine-layered microstructure with Ti3AlC2 grain size not exceeding 10 μm. The samples were readily machinable and had a high compressive strength of ∼800 MPa up to 700°C.  相似文献   

5.
A porous ceramic preform was fabricated by printing a powder blend of TiC, TiO2, and dextrin. The presintered preforms contained a bimodal pore size distribution with intra-agglomerate pores ( d 50≈0.7 μm) and inter-agglomerate pores ( d 50≈30 μm), which were subsequently infiltrated by aluminum melt spontaneously in argon above 1050°C. A redox reaction at 1400°C resulted in the formation of dense Ti–Al–O–C composites mainly composed of Ti3AlC2, TiAl3, Al, and Al2O3, which attained a bending strength of 320 MPa, a Young's modulus of 184 GPa, and a Vicker's hardness of 2.5 GPa.  相似文献   

6.
A MgAl2O4 (MA) spinel layer was synthesized on Ti3AlC2 substrate through the molten salt synthesis (MSS) method. The Ti3AlC2 substrate was immersed in MgCl2·6H2O powders and treated at 800°, 850°, and 900°C for 4 h in air. A continuous and 10-μm-thick MgAl2O4 layer was obtained at 900°C, by which the surface hardness of Ti3AlC2 can be effectively improved. The combined scanning electron microscopy observations and crystal morphology simulation further revealed that the as-formed MgAl2O4 presents tetragonal bipyramids morphology with (400)-orientation.  相似文献   

7.
Nanolaminates with a layered M N +1AX N crystal structure (with M: transition metal, A: group element, X: carbon or nitrogen, and N =1, 2, 3) offer great potential to toughen ceramic composites. A ternary Ti3AlC2 carbide containing ceramic composite was fabricated by three-dimensional printing of a TiC+TiO2 powder mixture and dextrin as a binder. Subsequent pressureless infiltration of the porous ceramic preform with an Al melt at 800°–1400°C in an inert atmosphere, followed by reaction of Al with TiC and TiO2 finally resulted in the formation of a dense multiphase composite of Ti3AlC2–TiAl3–Al2O3. A controlled flaw/strength technique was utilized to determine fracture resistance as a function of crack extension. Rising R -curve behavior with increasing crack extension was observed, confirming the operation of wake-toughening effects on the crack growth resistance. Observations of crack/microstructure interactions revealed that extensive crack deflection along the (0001) lamellar sheets of Ti3AlC2 was the mechanism responsible for the rising R -curve behavior.  相似文献   

8.
The surface chemistry and dispersion properties of aqueous Ti3AlC2 suspension were studied in terms of hydrolysis, adsorption, electrokinetic, and rheological measurements. The Ti3AlC2 particle had complex surface hydroxyl groups, such as ≡Ti–OH,=Al–OH, and −OTi–(OH)2, etc. The surface charging of the Ti3AlC2 particle and the ion environment of suspensions were governed by these surface groups, which thus strongly influenced the stability of Ti3AlC2 suspensions. PAA dispersant was added into the Ti3AlC2 suspension to depress the hydrolysis of the surface groups by the adsorption protection mechanism and to increase the stability of the suspension by the steric effect. Ti3AlC2 suspensions with 2.0 dwb% PAA had an excellent stability at pH=∼5 and presented the characteristics of Newtonian fluid. Based on the well-dispersed suspension, dense Ti3AlC2 materials were obtained by slip casting and after pressureless sintering. This work provides a feasible forming method for the engineering applications of MAX-phase ceramics, wherein complex shapes, large dimensions, or controlled microstructures are needed.  相似文献   

9.
Mechanical alloying (MA) has been used to synthesize Ti3SiC2 powder from the elemental Ti, Si, and C powders. The MA formation conditions of Ti3SiC2 were strongly affected by the ball size for the conditions used. MA using large balls (20.6 mm in diameter) enhanced the formation of Ti3SiC2, probably via an MA-triggered combustion reaction, but the Ti3SiC2 phase was not synthesized only by the MA process using small balls (12.7 mm in diameter). Fine powders containing 95.8 vol% Ti3SiC2 can be obtained by annealing the mechanically alloyed powder at relatively low temperatures.  相似文献   

10.
A methodology to allow the deliberate design of solid precursors to affect the solid-state synthesis of materials has proven elusive. We have designed a conceptual synthesis route for M n +1AX n phases that does not involve the usual intermediate phases. Instead, it is proposed that the common structural units within a solid-state precursor M n +1X n containing vacancy ordering should be the basis for direct synthesis of the desired M n +1AX n phase. The method is demonstrated to be successful in producing titanium aluminum carbide (Ti3AlC2) by the rapid intercalation of Al into TiC0.67 at 400°–600°C below the conventional synthesis temperature. Time-resolved neutron diffraction at 1 min time-resolution has confirmed the reaction sequence. The vacancy ordering in TiC0.67 occurred simultaneously to, and appeared to be greatly facilitated by, the ingress of aluminum. There is considerable scope for adaptation of the method to other M n +1AX n phases.  相似文献   

11.
Tribological properties of Ti3SiC2 and Al2O3-reinforced Ti3SiC2 composites (10 and 20 vol% Al2O3) were investigated by using an AISI-52100 bearing steel ball dryly sliding on a linear reciprocating athletic specimen. The friction coefficients were found varying only in a range of 0.1 under the applied loads (2.5, 5, and 10 N), and the wear rates of the composites decreased with increasing Al2O3 content. The enhanced wear resistance is mainly attributed to the hard Al2O3 particles nail the surrounding soft matrix and decentrale the shear stresses under the sliding ball to reduce the wear losses.  相似文献   

12.
The structure and chemistry of what initially was proposed to be Ti3Al2N2 are incorrect. Using high-resolution transmission electron microscopy, together with chemical analysis, the stoichiometry of this compound is concluded to be Ti4AlN3-delta (where delta = 0.1). The structure is layered, wherein every four layers of almost-close-packed Ti atoms are separated by a layer of Al atoms. The N atoms occupy ∼97.5% of the octahedral sites between the Ti atoms. The unit cell is comprised of eight layers of Ti atoms and two layers of Al atoms; the unit cell is hexagonal with P 63/ mmc symmetry (lattice parameters of a = 0.3 nm and c = 2.33 nm). This compound is machinable and closely related to other layered, ternary, machinable, hexagonal nitrides and carbides, namely M2AX and M3AX2 (where M is an early transition metal, A is an A-group element, and X is carbon and/or nitrogen).  相似文献   

13.
In this work, we report on the interdiffusion of Ge and Si in Ti3SiC2 and Ti3GeC2, as well as that of Nb and Ti in Ti2AlC and Nb2AlC. The interdiffusion coefficient, D int, measured by analyzing the diffusion profiles of Si and Ge obtained when Ti3SiC2–Ti3GeC2 diffusion couples are annealed in the 1473–1773 K temperature range at the Matano interface composition (≈Ti3Ge0.5Si0.5C2), was found to be given by
D int increased with increasing Ge composition. At the highest temperatures, diffusion was halted after a short time, apparently by the formation of a diffusion barrier of TiC. Similarly, the interdiffusion of Ti and Nb in Ti2AlC–Nb2AlC couples was measured in the 1723–1873 K temperature range. The D int for the Matano interface composition, viz. ≈(Ti0.5,Nb0.5)2AlC, was found to be given by
At 1773 K, the diffusivity of the transition metal atoms was ≈7 times smaller than those of the Si and Ge atoms, suggesting that the former are better bound in the structure than the latter.  相似文献   

14.
The present contribution reports the unlubricated friction and wear properties of Ti3SiC2 against steel. The fretting experiments were performed under varying load (1–10 N) and the detailed wear mechanism is studied using SEM-EDS, Raman spectroscopy, and atomic force microscopy. Under the selected fretting conditions, Ti3SiC2/steel tribocouple exhibits a transition in friction as well as wear behavior with coefficient of friction varying between 0.5 and 0.6 and wear rate in the order of 10−5 mm3·(N·m)−1. Raman analysis reveals that the fretting wear is accompanied by the triboxidation with the formation of TiO2, SiO2, and Fe2O3. A plausible explanation for the transition in friction and wear with load is proposed.  相似文献   

15.
Polycrystalline bulk samples of Ti3SiC2 were fabricated by reactively hot-pressing Ti, graphite, and SiC powders at 40 MPa and 1600°C for 4 h. This compound has remarkable properties. Its compressive strength, measured at room temperature, was 600 MPa, and dropped to 260 MPa at 1300°C in air. Although the room-temperature failure was brittle, the high-temperature load-displacement curve shows significant plastic behavior. The oxidation is parabolic and at 1000° and 1400°C the parabolic rate constants were, respectively, 2 × 10−8 and 2 × 10−5 kg2-m−4.s−1. The activation energy for oxidation is thus =300 kJ/mol. The room-temperature electrical conductivity is 4.5 × 106Ω−1.m−1, roughly twice that of pure Ti. The thermal expansion coefficient in the temperature range 25° to 1000°C, the room-temperature thermal conductivity, and the heat capacity are respectively, 10 × 10−6°C−1, 43 W/(m.K), and 588 J/(kgK). With a hardness of 4 GPa and a Young's modulus of 320 GPa, it is relatively soft, but reasonably stiff. Furthermore, Ti3SiC2 does not appear to be susceptible to thermal shock; quenching from 1400°C into water does not affect the postquench bend strength. As significantly, this compound is as readily machinable as graphite. Scanning electron microscopy of polished and fractured surfaces leaves little doubt as to its layered nature.  相似文献   

16.
Composites in the SiC–TiC–Ti3SiC2 system were synthesized using reactive hot pressing at 1600°C. The results indicate that addition of Ti3SiC2 to SiC leads to improved fracture toughness. In addition, high microhardness can be retained if TiC is added to the material. The best combination of properties obtained in this study is K I c =8.3 MPa·m1/2 and H v=17.6 GPa. The composition can be tailored in situ using the decomposition of Ti3SiC2. Ti3SiC2 decomposed rapidly at temperatures above 1800°C, but the decomposition could be conducted in a controlled manner at 1750°C. This can be used for synthesis of fully dense composites with improved properties by first consolidating to full density a softer Ti3SiC2-rich initial composition, and then using controlled decomposition of Ti3SiC2 to achieve the desired combination of microhardness and fracture toughness.  相似文献   

17.
Barium titanate has been prepared by solid-state reaction of nanocrystalline TiO2 (70 nm) with BaCO3 of different particle size (650, 140, and 50 nm). The results give evidence of a strong effect of the size of BaCO3 in the solid-state synthesis of barium titanate. The use of nanocrystalline BaCO3 already leads to formation of the single-phase BaTiO3 after calcination for 8 h at 800°C. The final powder consists of primary particles of ≈100 nm, has a narrow particle size distribution with d 50=270 nm, and no agglomerates larger than 800 nm. For the coarser carbonate, 4 h calcination at 1000°C are required and the final powder is much coarser. Solid-state reaction of nanocrystalline BaCO3 and TiO2 represents an alternative to chemical preparation routes for the production of barium titanate ultrafine powders.  相似文献   

18.
The ternary carbide Ti3SIC2 fabricated by a reactive hot-press route is investigated by transmission electron microscopy. The material consists mainly of large elongated grains with planar boundaries, and is characterized by a low defect density. Dislocations are observed in the grains and at grain boundaries. Perfect dislocations with b = 1/3<1120> lying in (0001) basal planes are present. These basal plane dislocations are mobile and multiply as a result of room-temperature deformation. All of the stacking faults observed lie in the basal planes.  相似文献   

19.
Formation of titanium silicon carbide (Ti3SiC2) by mechanical alloying (MA) of Ti, Si, and C powders at room temperature was experimentally investigated. A large amount of granules less than 5 mm in size, consisting of Ti3SiC2, smaller TiC particles, and other silicides, have been obtained after ball milling for only 1.5 h. The effect of excess Si in the starting powders on the formation of Ti3SiC2 was studied. The formation mechanism of Ti3SiC2 was analyzed. It is believed that a mechanically induced self-propagating reaction is ignited during the MA process. A possible reaction mechanism was proposed to explain the formation of the final products.  相似文献   

20.
This paper describes a novel way to prepare the ternary phase Ti3SiC2 in a single-step procedure that we call electron-beam-ignited solid-state reaction (EBI-SSR). The preparation route is discussed by means of an isothermal section of the Ti-Si-C phase diagram. Properties such as the Vickers hardness and the electrical resistivity of the resulting samples are presented. Our property data compare well to those that have been published. The main advantages of this preparation method are the controllability of process parameters such as heating rates, temperatures, and times, as well as the short duration of the overall sample preparation. However, a disadvantage is the presence of second phases (typically in amounts of <8%) that must be reduced via further optimization of the process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号