首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Catalytic performances of various metal molybdates were tested in the oxidative dehydrogenation of propane to propene with molecular oxygen under an atmospheric pressure. Most of the molybdates tested promoted the selective oxidative conversion of propane to propene and among them cobalt and magnesium molybdates were found highest in the activity and selectivity. It was also found that their catalytic activities were highly sensitive to the catalyst composition, and it turned out that Co0.95MoO x and Mg0.95MoO x catalysts which have slightly excess molybdenum showed the highest activity in the oxidative dehydrogenation of propane. Under the optimized reaction conditions, higher reaction temperatures and lower partial pressures of oxygen, these catalysts gave 60% selectivity to propene at 20% conversion of propane. Since the molybdates having the surface enriched with molybdenum oxide tended to show high activity for the propane oxidation, surface molybdenum oxide clusters supported on metal molybdate matrix seem to be the active sites for the selective oxidative dehydrogenation of propane.  相似文献   

2.
The activities of metal oxide catalysts in propane oxidative dehydrogenation to propene have been studied. The catalysts are M/-Al2O3 (where M is an oxide of Cr, Mn, Zr, Ni, Ba, Y, Dy, Tb, Yb, Ce, Tm, Ho or Pr). Both transition metal oxides (TMO) and rare-earth metal oxides (REO) are found to catalyze the reaction at 350-450 °C, 1 atm and a feed rate of 75 cm3/min of a mixture of C3H8, O2 and He in a molar ratio of 4:1:10. Among the catalysts, Cr-Al-O is found to exhibit the best performance. The selectivity to propene is 41.1% at 350 °C while it is 54.1% at 450 °C. Dy-Al-O has the highest C3H6 selectivity among the REO. At 450 °C, the other catalysts show C3H6 selectivity ranging from 16.2 to 37.7%. In general TMO show higher C3H6 selectivity than REO, which, however, show higher C2H4 selectivity. An attempt is made to correlate propane conversion and selectivity to C3H6 with metal-oxygen bond strength in the catalysts. For the TMO a linear correlation is found between the standard aqueous reduction potential of the metal cation of the respective catalyst and its selectivity to propane at 11% conversion. No such correlation has been found in the case of REO. Analyses of the product distributions suggest that for TMO propane activation the redox mechanism seems to prevail while the REO activate it by adsorbed oxygen.  相似文献   

3.
Different magnesium vanadate phases, V-Mg-O phases (α- Mg2V2O7, Mg3V2O8 and β- MgV2O6), MgO and V2O5 oxides have been compared with respect to their surface properties and their oxygen exchange capacities with C18O2 in the gas phase. By temperature- programmed desorption of carbon dioxide, the absence of any basic impurities (i.e., MgO or residual oxidised K impurities resulting from the preparation) has been evidenced on the surface of magnesium vanadate phases. This demonstrates that the catalytic properties of the magnesium vanadate phases for oxidative dehydrogenation of propane as previously studied cannot be explained by synergetic effects due to the presence of any basic component impurities since they are absent in this case. While on MgO an important surface exchange process occurs with C18O2 of the gas phase, this exchange is very low on V2O5 and pure V-Mg-O phases. A comparison of the different magnesium vanadate phases in the same experimental conditions indicates that the α-Mg2V2O7 phase (which exhibited the highest selectivity for oxidative dehydrogenation of propane to propene) shows the lowest lattice oxygen exchange with C18O2 of the gas phase. This is another specificity of this phase. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Catalytic activities of magnesium molybdates were investigated for the oxidative dehydrogenation of propane with and without molecular oxygen under atmospheric pressure. Catalytic properties drastically changed with the catalyst composition, and it turned out that Mg0.95MoOx catalysts having slight excess molybdenum showed the highest activity in the oxidative dehydrogenation of propane, which gave 61% selectivity to propene at 22% conversion of propane at 515°C. The catalytic activities strongly depended on the acidic properties of the catalysts. It was also revealed that the lattice oxide ions of the catalysts participated as an active oxygen in the oxidative dehydrogenation of propane.  相似文献   

5.
The catalytic oxidative dehydrogenation of ethane was investigated in a fixed-bed tubular microreactor at 500, 550 and 600 °C and a space velocity of 35 027ml g-1h-1. Two kinds of V-Mg oxides catalysts containing various V/Mg atomic ratios were employed. One group of catalysts was prepared by the solid reaction between fine powders of vanadium pentoxide and magnesium nitrate and the other ones were obtained from mesostructured V-Mg-Os. For the former catalysts, it was found that the selectivity to ethene increased and the conversion of ethane passed through a maximum with increasing V/Mg atomic ratio. For the catalysts obtained from the mesoporous materials, an optimum V/Mg atomic ratio was found, for which the conversion of ethane and the selectivity to ethene were maxima. Compared with the mixed-oxide catalysts, those obtained from the mesoporous materials exhibited much higher yields to ethene. Several new phases, such as pyro-Mg2V2O7, ortho-Mg3(VO4)2 and meta-MgV2O6, formed between magnesia and vanadia, were identified by XRD in the mixed V-Mg oxide catalysts; they may be responsible for the catalytic activity. In the catalysts prepared from mesoporous V-Mg-O, a V2O3 phase, which may contain highly dispersed magnesium, was identified and suggested to be responsible for the higher catalytic performance.  相似文献   

6.
《Catalysis communications》2011,12(15):1211-1214
The role of lattice and adsorbed oxygen species in propane dehydrogenation in a perovskite hollow fiber membrane reactor containing a Pt–Sn dehydrogenation catalyst was elucidated by transient analysis of products with a sub-millisecond time resolution. Propane is mainly dehydrogenated non-oxidatively to propene and hydrogen over the catalyst, while lattice oxygen of the perovskite oxidizes preferentially hydrogen to water. For achieving high propene selectivity at high propane conversions, the formation of gas phase O2 on the shell side of the membrane reactor should be avoided. Otherwise, oxygen species adsorbed over the Pt–Sn catalyst participate in non-selective C3H8/C3H6 transformations to C2H4 and COx.  相似文献   

7.
Selective reduction of nitric oxide with propane in the presence of excess oxygen was investigated using gallium ion-exchanged zeolite catalysts. Gallium ion-exchanged ferrierite (Ga-ferrierite) showed extremely high selectivity for this reaction under oxygen-rich conditions (10%). The molar ratio of reacted NO to consumed C3H8 was found to be near 3 on Ga-ferrierite.  相似文献   

8.
Catalytic oxidation of propane to produce propene was investigated over molybdenum-based mixed oxide catalysts. Cobalt or magnesium oxide combined with molybdenum oxide exhibits the best catalytic performance for the oxidative dehydrogenation of propane. Catalytic activities of both Co-Mo-O and Mg-Mo-O vary drastically on the catalyst composition and Co(Mg)0.95Mo1.0Ox having small amounts of free MoO3 on the Co(Mg)MoO4 surface shows the highest catalytic activity keeping a considerably high selectivity to propene. The catalytic activity also depends strongly on the acidic properties of catalysts and MoO3 clusters formed on the surface of Co(Mg)MoO4 are responsible for the activities for the oxidative dehydrogenation of propane.  相似文献   

9.
The oxidative conversion of propane to acrylic acid and acetic acid over Mo? V? Sb? R? O (R?La, Ce, Nd and Sm) catalysts at different reaction conditions (viz. temperature, C3H8/O2 ratio, H2O/C3H8 ratio, space velocity, etc.) was investigated. The catalytic activity and selectivity of the Mo? V? Sb catalyst are strongly influenced by the addition of rare earth metals to the catalyst. The addition of water vapour to the feed of propane and oxygen enhances greatly the formation of oxygenated products, particularly acrylic acid and acetic acid. The ratio of selectivities of acrylic acid to acetic acid was found to depend on the rare earth metal used in the catalyst's preparation and the reaction conditions. High contact times, i.e. high degrees of propane conversion, are detrimental to the formation of acrylic acid but beneficial for acetic acid formation. Copyright © 2005 Society of Chemical Industry  相似文献   

10.
《Applied catalysis》1989,46(1):69-87
Samarium, magnesium and manganese oxide and alkali-promoted oxide catalysts have been prepared and tested for the oxidative coupling of methane. The results show that alkali-promoted oxides inhibit total oxidation and have a higher selectivity for the formation of C2 products than the undoped metal oxides. These catalysts have been promoted by injecting pulses of gaseous chlorinated compounds (dichloromethane and chloroform) during the reaction. It has been found that these chlorinated compounds markedly increase the selectivity for the formation of C2 products for all the MnO2-based catalysts and for lithium-doped MgO and Sm2O3 catalysts. The effect is greatest in MnO2-based catalysts. When dichloromethane is added to a pure, unpromoted MnO2 catalyst the selectivity for the formation of carbon dioxide decreases from 82.6% to 4.1% and the selectivity for the formation of C2H4 increases from virtually zero to 56.3%. The highest C2 selectivity observed after promotion of pure MnO2 by dichloromethane is about 93%. Promotion of these pure oxide catalysts by gaseous chlorinated compounds provides an alternative to alkali promotion as a method of inhibiting total oxidation and of increasing ethylene production.  相似文献   

11.
Ni–V–O series catalysts for the oxidative dehydrogenation (ODH) of propane were prepared and characterized by BET, XRD, H2-TPR, O2-TPD-MS and electrical conductivity. At 425°C a C3H6 selectivity of 49.9% was observed on Ni0.9V0.1O Y at a C3H8 conversion of 19.4%, and the obtained selectivity is almost two times higher than that over NiO at the roughly same conversion of C3H8. The mobile oxygen species created by the interaction of NiO and V2O5 has been found in the composite catalysts by O2-TPD-MS and electrical conductivity studies, which seems to be responsible for the enhanced selectivity of the propane oxidative dehydrogenation.  相似文献   

12.
Au, Ag and Au–Ag catalysts on different supports of alumina, titania and ceria were studied for their catalytic activity of ethylene oxidation reactions. An addition of an appropriate amount of Au on Ag/Al2O3 catalyst was found to enhance the catalytic activity of the ethylene epoxidation reaction because Au acts as a diluting agent on the Ag surface creating new single silver sites which favor molecular oxygen adsorption. The Ag catalysts on both titania and ceria supports exhibited very poor catalytic activity toward the epoxidation reaction of ethylene, so pure Au catalysts on these two supports were investigated. The Au/TiO2 catalysts provided the highest selectivity of ethylene oxide with relatively low ethylene conversion whereas, the Au/CeO2 catalysts was shown to favor the total oxidation reaction over the epoxidation reaction at very low temperatures. In comparisons among the studied catalysts, the bimetallic Au–Ag/Al2O3 catalyst is the best candidate for the ethylene epoxidation. The catalytic activity of the gold catalysts was found to depend on the support material and catalyst preparation method which govern the Au particle size and the interaction between the Au particles and the support.  相似文献   

13.
A series of pure CeO2, ZrO2, and CeZrOx mixed metal oxide catalysts were prepared by a wetness impregnation method and were applied to the dehydrogenation of propane to propylene at 500°C and 0.1 MPa. The prepared catalysts were characterized by thermal gravimetric analysis (TGA), Brunauer, Emmett, and Teller (BET), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopes (TEM), Raman spectroscopy, and H2-TPR. It was observed that the zirconium content of the solid solution of the mixed metal oxide catalyst was 5%–25%, while the zirconium content of the material with phase segregation was higher (50%). The addition of zirconium was proven to decrease the oxygen vacancy concentration on the catalyst surface and change the intensity of (111) crystal of cerium oxide in the catalysts. Among the prepared catalysts, the Ce0.90Zr0.10Ox catalyst with the maximum strength of the (111) crystal plane of cerium oxide exhibited the better catalytic oxidation performance for the dehydrogenation of propane to propylene. Compared with ZrO2 in the blank experiment, the average propane conversion and propylene selectivity of the Ce0.90Zr0.10Ox catalyst were increased by 10.78% and 17.95%, respectively.  相似文献   

14.
In situ IR measurements for CO adsorption and preferential CO oxidation in H2-rich gases over Ag/SiO2 catalysts are presented in this paper. CO adsorbed on the Ag/SiO2 pretreated with oxygen shows a band centered around 2169 cm–1, which is assigned to CO linearly bonded to Ag+ sites. The amount of adsorbed CO on the silver particles (manifested by an IR band at 2169 cm–1) depends strongly on the CO partial pressure and the temperature. The steady-state coverage on the Ag surface is shown to be significantly below saturation, and the oxidation of CO with surface oxygen species is probably via a non-competitive Langmuir–Hinshelwood mechanism on the silver catalyst which occurs in the high-rate branch on a surface covered with CO below saturation. A low reactant concentration on the Ag surface indicates that the reaction order with respect to Pco is positive, and the selectivity towards CO2 decreases with the decrease of Pco. On the other hand, the decrease of the selectivity with the reaction temperature also reflects the higher apparent activation energy for H2 oxidation than that for CO oxidation.  相似文献   

15.
A series of CrOy (17.5 wt%)-CeO2 (X wt%)/γ-Al2O3 catalysts (X = 0, 0.5, 2, 5, 8) with various Ce contents were prepared by a wetness impregnation method and were applied to the dehydrogenation of propane to propylene at 550 °C and 0.1 MPa. The prepared catalysts were characterized by BET, H2-TPR, O2-TPD, XPS, XRD, SEM-EDS and Raman spectroscopy. Among the prepared catalysts, the 17.5Cr-2Ce/Al catalyst with the largest amount of lattice oxygen exhibited the best catalytic performance for the dehydrogenation of propane to propylene with lattice oxygen. The decreased presence of oxygen defects and reducibility were the factors responsible for the improved dehydrogenation activity of the catalysts. The CeO2 layer could inhibit the evolution of lattice oxygen (O2−) to electrophilic oxygen species (O2), and the oxygen defects on the catalyst surface were reduced. The inhibited lattice oxygen evolution prevented the deep oxidation of propane or propylene, the average COx selectivity decreased from 24.41% (17.5Cr/Al) to 5.71% (17.5Cr-2Ce/Al), and the average propylene selectivity increased from 60.15% (17.5Cr/Al) to 85.05% (17.5Cr-2Ce/Al).  相似文献   

16.
Daniell  W.  Ponchel  A.  Kuba  S.  Anderle  F.  Weingand  T.  Gregory  D.H.  Knözinger  H. 《Topics in Catalysis》2002,20(1-4):65-74
A series of ceria-supported vanadium catalysts was prepared via impregnation of the support with an ammonium metavanadate solution. The 723 K calcined samples were tested for propane oxydehydrogenation (ODH) activity and selectivity. The sample exhibiting the highest propane conversion was found to be the ceria support material itself, although this showed essentially no selectivity towards propene. An optimum propene yield of 4.2% was obtained at 673 K for the 6 wt% V2O5-CeO2 sample. Conversion decreased with increasing V loading which was attributed to the formation of cerium vanadate (CeVO4). This phase was found in all samples after calcination, its abundance rising in proportion to the V loading. In the 6 wt% V2O5 catalyst hydrated surface VOx species were present, although they underwent conversion to CeVO4 at temperatures above 573 K. The low reducibility of these surface vanadates was linked to the oxidation activity. It is inferred that surface polyvanadate species are responsible for the selective ODH of propane with V-O-V and/or V-O-Ce being the active oxygen species.  相似文献   

17.
Nonordered mesoporous molecular sieves MSU-x supported chromium catalysts (Cr/MSU-x) were prepared and characterized with X-ray diffraction, diffuse reflectance UV–vis, and H2-temperature programmed reduction techniques. Excellent results in dehydrogenation of propane to propylene with carbon dioxide (CO2) over Cr/MSU-x, 36.8% of propane conversion with 89.1% of propylene selectivity, were obtained. Lower Cr loading results in formation of Cr species with higher oxidation state, whereas higher Cr loading leads to bulk chromium oxide (Cr2O3) crystal on catalyst surface. The active sites of the catalysts and the promoting effect of mesoporous MSU-x as support were also discussed.  相似文献   

18.
It is demonstrated that millisecond partial oxidation of cyclohexane can be tuned by varying the catalyst and operating conditions to generate product distributions that favor (1) oxygenates, (2) olefins, or (3) syngas (H2 and CO). High selectivities to parent oxygenates require low conversions using low-temperature catalysts, such as Ag or Co. Olefins are favored by Pt or Pt-Sn and H2 addition eliminates the production of CO and CO2, thereby increasing olefin selectivities. For syngas, Rh is the catalyst of choice. Finally, a Pt-10% Rh single gauze gives high selectivities to both oxygenates and olefins.Conventional methods for the partial oxidation of cyclohexane are liquid-phase processes that are plagued by poor conversions, high recycle costs, long residence times (minutes to hours), and expensive catalysts. In contrast, with a cyclohexane–oxygen feed at C6H12/O2=2, a Pt-10% Rh single gauze catalyst can give total selectivities exceeding 80% to oxygenates and olefins at 25% cyclohexane conversion and complete oxygen conversion. The products consist of nearly 60% selectivity to the C6 products, cyclohexene and 5-hexenal. The temperature profile attained in the single-gauze reactor allows the preservation of these highly non-equilibrium products.Alternative catalysts for cyclohexane oxidation to oxygenates and olefins include α-alumina monoliths coated with Pt, Rh, Pt-Rh, Pt-Sn, Co, Mo or Ag. The Co, Mo and Ag catalysts give very high selectivities to C6 oxygenates but are hindered by poor conversions (<5%) of both cyclohexane and oxygen at these millisecond contact times. H2 addition to cyclohexane oxidation feed mixtures over Pt and Pt-Sn is shown to significantly increase the selectivities to C6 olefins while reducing the formation of CO and CO2.Cyclohexane oxidation in air over Rh monoliths enables the production of high yields (>95%) of syngas. This process could find applications in the automotive industry as the production of hydrogen from liquid fuels becomes important.  相似文献   

19.
The oxidative coupling of methane on magnesium oxide (MgO) has been studied in the presence of carbon tetrachloride (TCM) as a gas-phase additive. Addition of a small amount of TCM to the reactant stream improves the selectivity to C2H4, while the conversion of methane is not influenced by the additive. X-ray photoelectron spectra of the used MgO reveal the formation of chlorine species on the catalyst surface in quantities up to 0.20 of Cl/Mg (atomic ratio), although X-ray diffraction spectra of the catalyst show MgO only and the content of the chlorine species in the bulk phase estimated by X-ray fluorescence analysis is very low. It is concluded that the enhancement of the selectivity to C2H4 primarily results from the presence of surface chlorine species. The chlorinated species on the catalyst has been identified as MgCl2.  相似文献   

20.
A thermodynamic analysis of propane dehydrogenation with carbon dioxide was performed using constrained Gibbs free energy minimization method. Different reaction networks corresponding to different catalytic systems, including non-redox and redox oxide catalysts, were simulated. The influences of CO2/C3H8 molar ratio (1–10), temperature (700–1000 K), and pressure (0.5–5 bar) on equilibrium conversion and product composition were studied. In the presence of CO2 with a molar ratio of CO2/C3H8 = 1, the temperature of dehydrogenation can be 30 K lower than that of dehydrogenation in the presence of steam (H2O/C3H8 = 1) and about 50 K lower than that of simple dehydrogenation without dilution to achieve 60% propane conversion. It was found that the occurrence of dry reforming of propane and coke-forming side reactions could strongly impact the equilibrium product composition of the multireaction system and, therefore, these reactions should be kinetically controlled. Comparison of the simulated reactant conversions with those reported in the literatures revealed that the experimental conversion levels of propane are far below the corresponding equilibrium values due to rapid catalyst deactivation by coke, implying that research efforts should be directed toward formulation of more active and selective catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号