首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 179 毫秒
1.
采用Haake转矩流变仪制备了超高分子量聚乙烯(UHMWPE)与流动改性剂(FM4)的二元共混物,并通过差示扫描量热法和广角X射线衍射图谱对共混物的结晶形态进行了研究。结果表明,在二元共混物中,UHMWPE与FM4之间形成了共结晶,通过计算发现共混物的结晶度随FM4含量的增加而提高;并利用共混物的结晶形态对其力学性能进行了分析。  相似文献   

2.
介绍了一种拉伸流动支配的叶片挤出机的结构及其熔融塑化过程,利用该设备制备了碳纤维(CFs)/超高分子量聚乙烯(UHMWPE)/高密度聚乙烯(HDPE)共混物,研究了CFs和UHMWPE含量对共混物微观形貌、结晶性能和力学性能的影响。SEM图像表明,拉伸流动支配的叶片挤出机对CFs和UHMWPE有很好的分散混合效果;DSC分析结果表明,低含量的CFs和UHMWPE可以协同提高共混物的结晶度;加入适量的CFs和UHMWPE可使共混物的拉伸强度明显提升,当UHMWPE含量为8%、CF含量为12%时,CFs/UHMWPE/HDPE共混物拉伸强度与HDPE纯料相比,提高了23.4%;与CFs/HDPE共混物相比,加入UHMWPE可以有效缓解共混物冲击强度的降低,当UHMWPE含量为12%时,CFs/UHMWPE/HDPE共混物的冲击强度与CFs/HDPE共混物相比,提高了29.7%。  相似文献   

3.
聚丙烯/超高摩尔质量聚乙烯共混物的结构与性能研究   总被引:2,自引:0,他引:2  
研究了不同物料比和加工工艺对聚丙烯(PP)/超高摩尔质量聚乙烯(UHMWPE)共混体系性能的影响。结果表明,PP/UHMWPE共混体系具有比音一组分更高的冲击性能,当体系中UHMWPE的质量分数为60%时,共混物的冲击强度高达101kJ/m^2,分别是PP的1.8倍和UHMWPE的1.3倍,将UHMWPE加入PP中可明显降低PP的摩擦系数,提高其耐磨性,而适量UHMWPE加入PP中,对UHMWPE的耐磨性能无不良影响,对以PP为连续相的共混体系,混炼方式对共混物的性能影响大,偏光显微镜分析表明,当PP/UHMWPE共混体系中UHMWPE的质量分数大于40%时,就很难观察到明显的PP大球晶结构,DSC分析显示,PP/UHMWPE共混物出现了两纯组分熔点的结晶熔融峰,PP/UHMWPE为热力学不相容体系。  相似文献   

4.
PP/UHMWPE共混物力学性能的研究   总被引:9,自引:0,他引:9  
李炳海  陈勇  安峰 《塑料工业》2003,31(7):9-13
采用不同结构的聚丙烯(PP)分别与不同流动性能的超高摩尔质量聚乙烯(UHMWPE)进行共混,对共混物的力学性能进行了研究。发现PP和UHMWPE类型的适当匹配对共混物性能的提高非常重要。流动性较好的UHMWPE对熔体质量流动速率较小的嵌段共聚型PP(PPB)增韧增强效果突出,常温缺口冲击强度可达74.2kJ/m^2,断裂伸长率大于700%;同时共混物的强度和刚性也有一定程度的提高。在PPB/UHMWPE二元共混物中加入适当线性低密度聚乙烯(LLDPE),能够起到“减粘”和“增容”作用,有利于共混物性能,尤其是抗冲性能的进一步提高。  相似文献   

5.
《合成纤维工业》2015,(6):43-48
将超高相对分子质量聚乙烯(UHMWPE)与共混组分聚烯烃(PB)按一定质量比计量,并加入质量分数为0.3%的抗氧剂1010,在双螺杆挤出机上共混造粒,研究了PB的用量对UHMWPE/PB共混物熔点和流变性能的影响;采用实验室熔融纺丝装置对UHMWPE/PB共混物进行纺丝,拉伸得到UHMWPE/PB共混纤维,研究了共混纤维的形貌、结晶性能和力学性能。结果表明:在共混温度为230~290℃时,UHMWPE/PB共混物可实现宏观上均匀共混;共混物具有介于两共混组分熔点之间的单一熔点,共混物熔点随UHMWPE含量的提高而提高;共混物熔体属假塑性流体,270~320℃条件下,随UHMWPE含量的增加,UHMWPE/PB共混物结构黏度指数逐渐增加,黏流活化能逐渐减小,共混物的熔体黏度对温度不敏感;当UHMWPE/PB质量比为1∶1,纺丝温度为310℃时,共混物具有良好的可纺性,经过19倍的后拉伸,所获得的UHMWPE/PB共混纤维直径为45μm,断裂强度可达16.4 c N/dtex,初始模量约190.0 c N/dtex。  相似文献   

6.
以3种不同端基的超支化聚酯(HBP)分别对超高相对分子质量聚乙烯(UHMWPE)进行共混改性,研究了HBP的端基类型和用量对UHMWPE/HBP共混物力学性能和流变性能的影响。结果表明:随着端羟基超支化聚酯HBP-OH、端苯基超支化聚酯HBP-Bz及端十六烷基超支化聚酯HBP-C16加入量的增大,UHMWPE/HBP共混物的拉伸强度不断降低,断裂伸长率呈现先增大后减小的趋势。在UHMWPE中加入HBP-C16后,共混物的复数黏度呈现上升的趋势。HBP-OH和HBP-Bz的加入量增大能增强UHMWPE大分子链的活动能力,改善了UHMWPE的加工流动性能。  相似文献   

7.
通过DSC、SEM和动态流变法分析超高分子量聚乙烯/高密度聚乙烯(UHMWPE/HDPE)共混物的相容性。结果表明:UHMWPE和HDPE具有良好的相容性。UHMWPE/HDPE共混物是典型的假塑性流体,当HDPE的质量分数逐渐增大,共混物的复数黏度明显减小,其流动性变好。UHMWPE能够显著提高共混物的低温冲击性能,当UHMWPE含量超过40%,共混物在-60℃的缺口冲击强度在70 kJ/m2以上。当UHMWPE含量为50%,共混物的熔体流动速率为0.12 g/10min,-60℃缺口冲击强度达到77 kJ/m2,使加工性和低温冲击性能达到平衡。  相似文献   

8.
研究了超高分子量聚乙烯(UHMWPE)、热塑性聚氨酯(PUR—T)及增容剂POES的用量对尼龙6(PA6)共混物力学性能的影响。结果表明,UHMWPE、PUR—T均可改善PA6共混物的冲击性能,二者作用互补可进一步提高PA6共混物的韧性;而且在3份POES存在下,PA6/PUR—T/UHMWPE共混物的冲击强度可大幅度提高。是纯PA6的3.2倍,综合性能也得到改善。  相似文献   

9.
陈金耀  曹亚  李惠林 《塑料工业》2004,32(11):39-42
将3种不同的超高摩尔质量聚乙烯(UHMWPE)和聚甲醛(POM)共混,制成POM自润滑材料,并研究了共混物的摩擦磨损性能。结果表明:采用自制的PP改性UHMWPE(M-UHMWPE)与POM共混,能有效提高POM的摩擦磨损性能;当M.UHMWPE质量分数为5%时,POM/M-UHMWPE共混物的摩擦系数从纯POM的0.32降低到共混物的0.16,磨痕宽度从POM的5.00mm下降为3.56mm;SEM分析表明,在摩擦过程中,M-UHMWPE向磨损界面转移形成磨屑,有效地隔离了两摩擦面的接触,起到了减摩耐磨剂的作用,明显降低了POM树脂的摩擦系数,提高了POM的耐磨损性能。  相似文献   

10.
采用自制的交联聚丙烯(PP-X)与超高分子量聚乙烯(UHMWPE)、聚丙烯(PP)共混,对共混物的力学性能和滑动摩擦性能进行了研究。结果表明,在力学性能改变不大的情况下,当UHMWPE/HL-X/PP的质量比为80/20/10时,共混物的磨痕宽度为5.69mm,摩擦系数为0.125,比纯UHMWPE的磨痕宽度、摩擦系数分别下降了21.73%和39.90%,比UHMWPE)/PP(100/10)共混物分别下降了2.0%和18.83%。扫描电子显微镜照片显示,在UHMWPE的磨损表面存在严重的刮痕、裂纹及磨屑,而在UHMWPE,PP-X/PP共混物的磨损表面却很少发现上述现象。  相似文献   

11.
分析了影响超高分子量聚乙烯(UHMWPE)熔体流动性的主要因素。这些因素包括添加剂(填料、增塑剂、润滑剂等)、流场参数(温度、剪切速率、静压力、流道形状等)和大分子结构(分子质量及其分布、支化程度等),它们对UHMWPE的流动性均有不同程度的影响;指出为保证UHMWPE在成型加工过程中具有一定的流动性,必须提供一定的压力和足够的热量,选择适当的剪切速率,并以合适的添加剂相配合。  相似文献   

12.
CB‐containing HIPS/UHMWPE and HIPS/XL‐UHMWPE are unique systems, in which structuring takes place, affecting the electrical (to be described in a future article), rheological, mechanical, and dynamical‐mechanical properties. The XL‐UHMWPE particles have undergone structural fixation due to the crosslinking, maintaining their porosity and internal intricate structure even after high‐temperature melt processing, as opposed to the UHMWPE particles. Differences in the flow mechanisms of HIPS/UHMWPE and HIPS/XL‐UHMWPE blends have been attributed to polymer viscous flow in the former case vs. particle slippage in the latter. The mechanical properties of HIPS/UHMWPE are enhanced when utilizing XL‐UHMWPE as a dispersed phase, especially the strength, because of changes in the inherent properties of the UHMWPE following irradiation, and in particular, the nature of the HIPS/XL‐UHMWPE interface. The results for the CB‐containing 70HIPS/30XL‐UHMWPE blend are especially surprising and of practical importance, due to the fact that no degradation of the mechanical properties has occurred as a result of the CB incorporation. The dynamical mechanical properties reflect the differences between the UHMWPE and XL‐UHMWPE‐containing blends as well. The presence of either type of UHMWPE, CB content, and blend composition affect the dissipation, but have only a minor influence on the transition temperatures of the components. Of special interest is the increased damping of XL‐UHMWPE–containing compositions. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1731–1744, 1999  相似文献   

13.
流动改性剂对UHMWPE流动及磨损性能的影响研究   总被引:3,自引:0,他引:3  
研究了聚乙烯(LDPE、HDPE)、聚丙烯(PP)及尼龙(PA)对超高分子量聚乙烯(UHMWPE)流动及磨损性能的影响,发现流动性越好的聚乙烯对UHMWPE流动性改进越大,且加入比例越高,共混物的流动性越好;当HDPE组分小于50%时,对UHMWPE磨损性能影响很小,而LDPE则大大损害了共混物的磨损性能。均聚PP比共聚PP对UHMWPE的流动性改进更大,但使其磨损性能大大降低。PA含量在40%以下对UHMWPE的流动性改进不大,对磨损性能影响也很小。  相似文献   

14.
UHMWPE/HDPE共混物的流动性及力学性能的研究   总被引:7,自引:0,他引:7  
采用不同MFR的HDPE与UHMWPE进行熔体共混。结果表明UHMWPE/HDPE共混物流动性和力学性能的变化受体系组成、熔体粘度比等因素的影响较大。HDPE的MFR过高、过低或用量过多,均不利于共混物流动性及综合力学性能的改善。当HDPE作为分散相时,易于实现向UHMWPE高粘弹粒子的渗透、分散及结合,共混物的.MFR及拉伸屈服强度、断裂强度、断裂伸长率均比UHMWPE有提高,共混物表现出协同效应;当UHMWPE为分散相或二者熔体粘度比差异过大时,混合效果变差,共混物综合力学性能下降;在某些中间配比下,二者表现出增链缠结效应,共混物MFR明显降低。  相似文献   

15.
The influence of poly(ethylene glycol) (PEG)‐containing additives on the extrusion behavior of ultrahigh molecular weight polyethylene/polypropylene (UHMWPE/PP) blend was studied. It was found that the addition of small amounts of PEG to UHMWPE/PP blend resulted in significant reduction of die pressure and melt viscosity, and obvious increase of the flow rate at a given die pressure, while PEG/diatomite binary additives enhanced the improvement in the processability of UHMWPE/PP blend. When pure HDPE was extruded with the die through which UHMWPE/PP/PEG blend was previously extruded, the extrusion pressure of HDPE increased with the extrusion time gradually. This meant that PEG might migrate to the die wall surface and coat it in the extrusion of UHMWPE/PP/PEG blend. FTIR spectra and SEM micrographs of the UHMWPE/PP/PEG extrudates indicated that PEG located not only at the surface but also in the interior of the extrudates. So, the external lubrication at the die wall, combined with the internal lubrication to induce interphase slippage of the blend, was proposed to be responsible for the reduction of die pressure and viscosity. In addition, an ultrahigh molecular weight polysiloxane and a fluoropolymer processing aid were used as processing aids in the extrusion of UHMWPE/PP as control, and the results showed that only minor reduction effects in die pressure and melt viscosity were achieved at their suggested loading level. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1282–1288, 2006  相似文献   

16.
The wear and friction behavior of ultrahigh molecular weight polyethylene (UHMWPE)/ polypropylene (PP) blends was studied. The addition of PP improves processability and the anti‐wear properties of UHMWPE. The friction coefficient and wear rate of pure UHMWPE are much higher than those of UHMWPE/PP blends under the same conditions, and the wear rate of UHMWPE is more sensitive to load and wear time than that of the UHMWPE/PP blend. Long scratch grooves and cracks occurred in the worn surface of UHMWPE, while no such serious damage was observed in the worn surface of the UHMWPE/PP blend. Atomic Force Micrograph using the contact mode indicated that the friction force between pure UHMWPE and Si3N4 tip is much higher than that for the UHMWPE/PP blend, which is consistent with the results from macro‐friction testing.  相似文献   

17.
As linear polyethylenes, ultrahigh‐molecular‐weight polyethylene (UHMWPE) and high‐density polyethylene (HDPE) have the same molecular structure, but the large difference in viscosity between them makes it difficult to obtain well‐mixed blends. An innovative eccentric rotor extruder (ERE) generating an elongational flow was used to prepare HDPE/UHMWPE blends within short processing times. Compared with the obvious two‐phase morphology of a sample from a twin‐screw extruder observed with a scanning electron microscope, few small UHMWPE particles were observed in the HDPE matrix for a sample from the ERE, indicating the good mixing on a molecular level of HDPE/UHMWPE blends achieved by the ERE during short processing times. The morphological changes of blends prepared using the ERE evidenced the good integration of HDPE and UHMWPE even though the UHMWPE content is up to 50 wt% in the blends. Moreover, all blends retained most of the intrinsic molecular weight. The good mixing was further confirmed from the thermal, crystallization and rheological behaviors determined using differential scanning calorimetry and dynamic rheological measurements. Importantly, the 50/50 blend presented improved mechanical properties, especially super‐impact strength of 151.9 kJ m?2 with incomplete‐break fracture state. The strengthening and great toughening effects of UHMWPE on the blends were attributed to the addition of unwrapped UHMWPE long molecular chains. The effective disentanglement mechanism of UHMWPE chains under elongational flow was explained schematically by a non‐parallel three‐plate model. © 2019 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号