首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this work, we studied in detail the magnetic and magnetocaloric properties of the La0.7Ca0.2Ba0.1MnO3 compound according to the phenomenological model. Based on this model, the magnetocaloric parameters such as the maximum of the magnetic entropy change ΔS M and the relative cooling power (RCP) have been determined from the magnetization data as a function of temperature at several magnetic fields. The theoretical predictions are found to closely agree with the experimental measurements, which make our sample a suitable candidate for refrigeration near room temperature. In addition, field dependences of \({{\Delta } S}_{\mathrm {M}}^{\max }\) and RCP can be expressed by the power laws \({\Delta S}_{\mathrm {M}}^{\max }\approx a\)(μ 0 H) n and RCP ≈b(μ 0 H) m , where a and b are coefficients and n and m are the field exponents, respectively. Moreover, phenomenological universal curves of entropy change confirm the second-order phase transition.  相似文献   

3.
Novel green-emitting piezoelectric ceramics of SrBi4?x Er x Ti4O15 (SBT-xEr) were prepared. Strong up-conversion with bright green (524 and 548 nm) and a relatively weak red (660 nm) emission bands were obtained under 980 nm excitation at room temperature, which is attributed to the intra 4f–4f electronic transition of (2H11/2, 4S3/2)–4I15/2 and the transition from 4F9/2 to 4I15/2 of Er3+ ions, respectively. Simultaneously, Er3+ doping promotes the electrical properties. At 0.8 mol%Er, the optimal electric properties with high Curie temperature of T c?~527?°C, large remanent polarization of 2P r?~14.92 μC/cm2 and piezoelectric constant of d 33?~17 pC/N was achieved. As a multifunctional material, Er3+ doped SBT showed a great potential to be used in 3D-display, bio-imaging, solid state laser and optical temperature sensor.  相似文献   

4.
The local structure and the g factors (g x , g y , and g z ) of the Cu2+ site in Y2BaCuO5 are theoretically studied using the perturbation formulas of the g factors for a 3d9 ion in orthorhombically elongated octahedra. The orthorhombic field parameters in these formulas are determined from the superposition model and the local geometry of the system. From the calculations, the oxygen octahedron is found to undergo the local elongation ΔZ (≈0.05 Å) along c-axis and the relative bond length variation ΔX (≈0.1 Å) along a- and b-axes, respectively. The calculated g factors based on the above local structure are in good agreement with the experimental data. The relationships between the anisotropies of the g factors and the low symmetrical (orthorhombic) distortions of the Cu2+ site in Y2BaCuO5 are discussed.  相似文献   

5.
The effects of Ba 2+ doping on the electrical and magnetic properties of charge-ordered Pr0.6Ca0.4MnO3 were investigated through electrical resistivity and AC susceptibility measurements. X-ray diffraction data analysis showed an increase in unit cell volume with increasing Ba 2+ content indicating the possibility of substituting Ba 2+ for the Ca-site. Electrical resistivity measurements showed insulating behavior and a resistivity anomaly at around 220 K. This anomaly is attributed to the existence of charge ordering transition temperature, \(T^{\mathrm {R}}_{\text {CO}}\) for the x = 0 sample. The Ba-substituted samples exhibited metallic to insulator transition (MI) behavior, with transition temperature, T MI, increasing from ~98 K (x = 0.1) to ~122 K (x = 0.3). AC susceptibility measurements showed ferromagnetic to paramagnetic (FM-PM) transition for Ba-substituted samples with FM-PM transition temperature, T c, increasing from ~121 K (x = 0.1) to ~170 K (x = 0.3), while for x = 0, an antiferromagnetic to paramagnetic transition behavior with transition temperature, T N, ~170 K was observed. In addition, inverse susceptibility versus T plot showed a deviation from the Curie–Weiss behavior above T c, indicating the existence of the Griffiths phase with deviation temperature, T G, increasing from 160 K (x = 0.1) to 206 K (x = 0.3). Magnetoresistance, MR, behavior indicates intrinsic MR mechanism for x = 0.1 which changed to extrinsic MR for x > 0.2 as a result of Ba substitution. The weakening of charge ordering and inducement of ferromagnetic metallic (FMM) state as well as increase in both T c and T MI are suggested to be related to the increase of tolerance factor, τ, and increase of e g ?electron bandwidth as average ionic radius at A-site, <r A> increased with Ba substitution. The substitution may have reduced MnO6 octahedral distortion and changed the Mn–O–Mn angle which, in turn, promotes itinerancy of charge carrier and enhanced double exchange mechanism. On the other hand, increase in A-site disorder, which is indicated by the increase in σ 2 is suggested to be responsible for the widening of the difference between T c and T MI.  相似文献   

6.
As part of a search for new spintronic materials, we have studied the magnetic properties of the CuGa0.94Mn0.06Te2 chalcopyrite solid solution in the range 2–400 K in weak and strong magnetic fields. Magnetization isotherms, σ(H), were obtained in magnetic fields of up to 3980 kA/m. σ(T) data were collected in two ways: the sample was cooled in a magnetic field or in zero field. The experimental data were analyzed by fitting to the Langevin function. The data are adequately represented by this relation in the case when the magnetic moment of the clusters is μcl = 23.4μB and the concentrations of magnetic clusters and noninteracting Mn2+ ions are n cl = 2.4 × 1025 m?3 and n pm = 5.7 × 1025 m?3, respectively. The calculated average cluster size is d cl = 33 Å, the number of Mn2+ ions per cluster is z = 21 atoms per cluster, and the magnetic moment per Mn2+ ion in the clusters is μMn = 1.1μB. This μMn value is far below the theoretical magnetic moment of the Mn2+ ion in the electronic configuration d 5(5.9μB), suggesting antiferromagnetic exchange interaction.  相似文献   

7.
The novel Ca4?x(PO4)2O: xDy3+ and Ca4?x?y(PO4)2O: xDy3+, yEu2+ multi-color phosphors were synthesized by traditional solid-state reaction. The crystal structure, particle morphology, photoluminescence properties and energy transfer process were investigated in detail. The X-ray diffraction (XRD) results demonstrate that the products showed pure monoclinic phase of Ca4(PO4)2O when x < 0.1. The scanning electron microscopy (SEM) indicated that the phosphors were grain-like morphologies with diameters of ~ 3.7–7.0 μm. Under excitation of 345 nm, Dy3+-doped Ca4(PO4)2O phosphors showed multi-color emission bands at 410, 481 and 580 nm originated from oxygen vacancies and Dy3+. Interestingly, Ca4(PO4)2O: Dy3+, Eu2+ phosphors exhibited blue emission band at 481 nm and broad emission band from 530 to 670 nm covering green to red regions. The energy transfer process from Dy3+ to Eu2+ was observed for the co-doped samples, and the energy transfer efficiency reached to 60% when Eu2+ molar concentration was 8%. In particular, warm/cool/day white light with adjustable CCT (2800–6700 K) and high CRI (Ra > 85) can be obtained by changing the Eu2+ co-doping contents in Ca4(PO4)2O: Dy3+, Eu2+ phosphors. The optimized Ca3.952(PO4)2O: 0.04Dy3+, 0.008Eu2+ phosphor can achieve the typical white light with CCT of 4735 K and CRI of 87.  相似文献   

8.
The Seebeck coefficient (S) of Ca1–x Pr x MnO3–δ (х = 0, 0.05, 0.10, 0.15) manganites with a perovskite-like structure has been measured in air at temperatures (T) from 300 to 1200 K. The negative sign of their S indicates that all of the samples have n-type conductivity. The observed increase in the magnitude of the Seebeck coefficient with increasing T is interpreted in terms of small-polaron transport with allowance for the decrease in Mn3+ concentration as a result of the disproportionation reaction 2Mn3+ = Mn2+ + Mn4+. Based on a theoretical analysis of experimental S(T) data, we calculated equilibrium constants for the disproportionation reaction, carrier concentration, and the concentration of sites available for carrier migration as functions of temperature. It has been shown that, for an adequate analysis of electron hopping and calculation of the Seebeck coefficient of the electron-doped manganites, the spin state of the Mn4+ ions should be taken into account.  相似文献   

9.
Polyethyleneimine (PEI) with an amount of –NH2 groups used in precursor solution could effectively reduce Cu2+ volatilization during the pyrolysis process. Thermogravimetric analysis shows that the temperature window of low-temperature pyrolysis for precursor solution with PEI (PEI-YBCO) is widened significantly. The slower pyrolysis process can enrich Cu2+ and improve critical current density (Jc) of PEI-YBCO films. The highest Jc is 3.03 MA/cm2 at 77 K when the amount of PEI is 0.5 g/10 mL and the film thickness is 400 nm. Then the thickness increases from 0.4 to 2.0 μm by changing the coating times. The Jc values of PEI-YBCO films decrease gradually with the thickness increase. However, the critical current (Ic) can be up to 197 A/cm (at 77 K, self-field) and Jc can still keep 1.68 MA/cm2 at 1.2 μm.  相似文献   

10.
The photoluminescence (PL) spectra and Eu2+ excited state lifetime of EuGa2S4 and EuGa2S4:Er3+ have been studied in the range 78–500 K. The spectra show a band at 545 nm, due to the 4f 65d → 4f 7(8 S 7/2) transition. With increasing temperature, the full width at half maximum Γ(T) of the PL band of EuGa2S4 and EuGa2S4:Er3+ crystals increases from 0.15 to 0.22 and from 0.13 to 0.19 eV, respectively. Over the entire temperature range studied, Γ(T) is a linear function of T 1/2. The 545-nm emission intensity and Eu2+ excited state lifetime in EuGa2S4 and EuGa2S4:Er3+ vary exponentially with temperature. The luminescence quenching energies evaluated from the Arrhenius plots of I(103/T) and τ(103/T) coincide (0.10 eV) within the error of determination.  相似文献   

11.
Bi2–хLaхFe4O9 and Bi2Fe4–2xTixCoxO9 ferrites have been prepared by solid-state reactions at a temperature of 1073 K. X-ray diffraction data indicate that, in the Bi2–хLaхFe4O9 system, the limiting degree of La3+ substitution for Bi3+ ions in Bi2Fe4O9 does not exceed 0.05 and that the limiting degree of substitution in the Bi2Fe4–2xTixCoxO9 system lies in the range 0.05 < x < 0.1. The specific magnetization and specific magnetic susceptibility of the samples have been measured at temperatures from 5 to 300 K in a magnetic field of 0.86 T. The field dependences of magnetization obtained for the Bi2–хLaхFe4O9 and Bi2Fe4–2xTixCoxO9 ferrites at temperatures of 300 and 5 K demonstrate that partial isovalent substitution of La3+ for Bi3+ ions in Bi2Fe4O9 and heterovalent substitution of Ti4+ and Co2+ ions for two Fe3+ ions leads to partial breakdown of the antiferromagnetic state and nucleation of a ferromagnetic state.  相似文献   

12.
Barium hexagonal ferrites (BaNd x Fe12?x O 19) have been synthesized by initial high-energy milling of the precursors and calcining subsequently. The as-prepared samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometry (VSM). XRD and SEM examinations reveal that a high-crystallized hexagonal BaNd x Fe12?x O 19 with lamellar morphology is obtained when the precursor is calcined at 1200°C in air for 3 h. The hexagonal crystalline structure of BaFe12 O 19 is not changed after doping Nd3+ ions in BaFe12 O 19. However, lattice parameters a and b values increase with an increase in Nd content at first, then decrease. Nd substitution may improve the magnetic properties of BaNd x Fe12?x O 19. BaNd0.1Fe11.9 O 19, obtained at 1050°C, has the highest specific saturation magnetization value (80.81 emu/g) and magnetic moment (16.21 μ B); BaNd0.2Fe11.8 O 19, obtained at 950°C, has the highest coercivity value, 4075.19 Oe.  相似文献   

13.
Ni–Zn-substituted BaCoTiFe10O19 were successfully prepared by a sol-gel combustion method. The grain size of samples is about 150–800 nm ,and the grains first increase and then decrease with increasing x. Through XRD analysis, all diffraction peaks correspond to the BaTiCoFe10O19 and no other phase signal is detected. With x = 0.3, the saturation magnetization (M s) is biggest (66.7 emu/g) and its coercivity (H c) is 172.3 Oe. The curves μ ? μ have distorted semicircles, and each semicircle has an extremum. Each extremum of μ ? μ curve corresponds to a peak of μ curve and has response to reflection loss (RL), which is further illuminated. When x = 0.3, the widest bandwidth of R L ≤?10 dB is 6.13 GHz (9.68–15.81 GHz) at d = 2.6 mm. The RL curve closely relates to distorted semicircle of μ ? μ curve, and the relation is also deeply illuminated, which is beneficial to study absorption materials.  相似文献   

14.
In order to obtain high temperature coefficient of resistance (TCR) value of La0.67Ca0.33MnO3:Ag x (LCMO:Ag x ) composites, samples with different Ag contents (x?=?0, 0.1, 0.2, 0.25, 0.3, and 0.5) were prepared by sol–gel method. X-ray diffraction analyses indicated that all samples had orthorhombic perovskite structures. As x increased, lattice parameters (a, b, c) and cell volumes underwent slight expansions. Interestingly, the addition of Ag dramatically affected TCR and magneto-resistance (MR) values. Elevated TCR value up to 53.46%·K?1 at 277 K was observed for LCMO:Ag x composites with added Ag at the composition of x?=?0.1. Meanwhile, MR value at 263 K reached 71% at the magnetic field of 1 T for samples with Ag composition of x?=?0.25. The increase in Mn4+/Mn3+ ratio and improvement in crystallization caused by added Ag was found responsible for the elevated values of TCR, MR, and Tp. These findings may have practical use in high-performance magneto-resistive manganites.  相似文献   

15.
Lead-free (K0.5Na0.5)(Nb1-xGe x )O3 (KNN-xGe, where x = 0-0.01) piezoelectric ceramics were prepared by conventional ceramic processing. The effects of Ge4+ cation doping on the phase compositions, microstructure and electrical properties of KNN ceramics were studied. SEM images show that Ge4+ cation doping improved the sintering and promoted the grain growth of the KNN ceramics. Dielectric and ferroelectric measurements proved that Ge4+ cations substituted Nb5+ ions as acceptors, and the Curie temperature (TC) shows an almost linear decrease with increasing the Ge4+ content. Combining this result with microstructure observations and electrical measurements, it is concluded that the optimal sintering temperature for KNN-xGe ceramics was 1020°C. Ge4+ doping less than 0.4 mol.%can improve the compositional homogeneity and piezoelectric properties of KNN ceramics. The KNN-xGe ceramics with x = 0.2% exhibited the best piezoelectric properties: piezoelectric constant d33 = 120 pC/N, planar electromechanical coupling coefficient kp = 34.7%, mechanical quality factor Qm = 130, and tanδ = 3.6%.  相似文献   

16.
The electrical conductivity (σ) of Ca1–x Pr x MnO3–δ (х = 0–0.15) manganites with a perovskite-like structure has been measured by the four probe method in air at temperatures (T) from 320 to 1220 K. The results have been analyzed in terms of a model of small adiabatic polarons. The observed decrease in σ with increasing T is primarily due to the decrease in carrier concentration as a result of Mn3+ disproportionation into Mn2+ and Mn4+. The polaron mobility ranges from 0.2 to 1.2 cm2/(V s) and decreases with increasing praseodymium content.  相似文献   

17.
In the case of Ti4+ remain unchanged, the Ca2+ substituted Ba0.75?xCaxLa0.25Fe11.6Co0.25Ti0.15O19 (0?≤?x?≤?0.05) were prepared by conventional solid-state reaction method at temperature of 1280 °C. A ball-to-power weight ratio of 10:1. Their crystal structure and magnetic properties were mainly investigated. The results show that the single magnetoplumbite phase structure transformed into the multiphase structure. Meanwhile, the small amount of α-Fe2O3 phase existed in M-type phase. The micrographs were observed by a field emission scanning electron microscopy (SEM). Vibrating sample magnetometer (VSM) was used to analyze the magnetic properties. The saturation magnetization (M s ) first increases then decreases when x from 0 to 0.03. But, when x from 0.03 to 0.05, the saturation magnetization (M s ) first increases then decreases too. The maximum value is at x?=?0.04 (M s ?=?70.73 emu/g). The value of coercivity (H c ) first increases then decreases when x from 0 to 0.04. But, the value increased when x from 0.04 to 0.05. The maximum value is at x?=?0.02 (H c ?=?1691 Oe).  相似文献   

18.
Single-phase ceramic samples of La1–xNdxInO3 (0.007 ≤ x ≤ 0.05), LaIn0.99M0.01O3, and La0.95Nd0.05In0.995M0.005O3 (M = Cr3+ and Mn3+) solid solutions have been prepared by solid-state reactions, and their crystal structure, magnetic field dependences of their specific magnetization at 5 and 300 K, and temperature dependences of their molar magnetic susceptibility have been studied. It has been shown that the 300-K specific magnetization of the La1–xNdxInO3 (x = 0.02, 0.05), La0.95Nd0.05In0.995M0.005O3 (M = Cr3+ and Mn3+), and LaIn0.99Mn0.01O3 solid solutions increases linearly with increasing magnetic field strength up to 14 T and that the magnitude of the 300-K specific magnetization of the La0.993Nd0.007InO3 and LaIn0.99Cr0.01O3 solid solutions increases linearly, but they have diamagnetic magnetization. At a temperature of 5 K, the magnetization of all the indates studied here increases nonlinearly with increasing magnetic field strength, gradually approaching magnetic saturation, without, however, reaching it in a magnetic field of 14 T. In the temperature range where the Curie–Weiss law is obeyed (5–30 K), the effective magnetic moments obtained for the Nd3+ ion (\({\mu _{effN{d^{3 + }}}}\)) in the La1–xNdxInO3 solid solutions with x = 0.007, 0.02, and 0.05 are 2.95μB, 3.09μB, and 2.75μB, respectively, which is well below the theoretical value \({\mu _{effN{d^{3 + }}}}\)= 3.62μB. The effective magnetic moments of the Cr3+ and Mn3+ ions in the LaIn0.99Cr0.01O3 and LaIn0.99Mn0.01O3 solid solutions are 3.87μB and 5.11μB, respectively, and differ only slightly from the theoretical values \({\mu _{effC{r^{3 + }}}}\)= 3.87μB and \({\mu _{effM{n^{3 + }}}}\)= 4.9μB.  相似文献   

19.
We present an extensive study of the magnetic properties of a novel La0.5Ba0.5MnO3 perovskite material prepared by the hydrothermal method. The explored sample was structurally studied by the x-ray diffraction (XRD) method which confirms the formation of a pure cubic phase of a perovskite structure with Pm3m space group. The magnetic properties were probed by employing temperature M (T) and external magnetic field M (μoH) dependence of magnetization measurements. A magnetic phase transition from ferromagnetic to paramagnetic phase occurs at 339 K in this sample. The maximum magnetic entropy change (\(\left | {{\Delta } S}_{M}^{\max } \right |\)) took a value of 1.4 J kg??1 K??1 at the applied magnetic field of 4.0 T for the explored sample and has also been found to occur at Curie temperature (TC). This large entropy change might be instigated from the abrupt reduction of magnetization at TC. The magnetocaloric effect (MCE) is maximum at TC as represented by M (μoH) isotherms. The relative cooling power (RCP) is 243.2 J kg??1 at μoH =?4.0 T. Moreover, the critical properties near TC have been probed from magnetic data. The critical exponents δ, β, and γ with values 3.82, 0.42, and 1.2 are close to the values predicted by the 3D Ising model. Additionally, the authenticity of the critical exponents has been confirmed by the scaling equation of state and all data fall on two separate branches, one for T < TC and the other for T > TC, signifying that the critical exponents obtained in this work are accurate.  相似文献   

20.
Sm3+-activated NaSrPO4 phosphors could be efficiently excited at 403 nm, and exhibited a bright red emission mainly including four wavelength peaks of 565, 600, 646 and 710 nm. The highest emission intensity was found for NaSr 1?x PO4: xSm3+ with a composition of x = 0.007. Concentration quenching was observed as the composition of x exceeds 0.007. The decay time values of NaSr1?x PO 4 : xSm3+ phosphors range from around 2.55 to 3.49 ms. NaSr1?x PO4: xSm3+ phosphor shows a higher thermally stable luminescence and its thermal quenching temperature T 50 was found to be 350°C, which is higher than that of commercial YAG:Ce3+ phosphor and ZnS:(Al, Ag) phosphor. Because NaSr1?x PO4: xSm3+ phosphor features a high colour-rendering index and chemical stability, it is potentially useful as a new scintillation material for white light-emitting diodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号