首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The exact modes of vibration of a circular plate satisfy the geometrical boundary conditions of uniform elliptical plates in modified polar coordinates. In a previous investigation the exact modes of a clamped circular plate were used as shape functions in the Rayleigh-Ritz method to characterize the vibration of clamped elliptical plates. The mass and stiffness matrices were expressed in closed form and the resulting eigen value problems for the four mode categories of the elliptical plates were solved numerically. In the present investigation the computed variations of the plate frequencies with aspect ratio are used to study the similarities between the elliptical and circular plate modes. It is concluded that as the aspect ratio increases from unity, the axisymmetrical circular plate mode varies as a single elliptical plate mode, whereas the non-axisymmetrical circular plate mode splits up into two distinct elliptical plate modes.  相似文献   

2.
In the present paper, electro-thermo nonlinear vibration of a piezo-polymeric rectangular micro plate made from polyvinylidene fluoride (PVDF) reinforced by zigzag double walled boron nitride nanotubes (DWBNNTs) is studied. This plate is embedded in an elastic medium which is simulated by Winkler and Pasternak foundation models. Using nonlinear strain-displacement relations and nonlocal elasticity plate theory as well as considering charge equation for coupling between electrical and mechanical fields, the motion equations are derived based on energy method and Hamilton??s principle. The differential quadrature method (DQM) is employed to computation of nonlinear frequency for different mechanical and free-free electrical boundary conditions. The results indicate that smart composite and consequently the generated G4 improved sensor and actuator applications in several process industries, because it increases the nonlinear vibration frequency. Furthermore, it can be also found that the nonlinear frequency increases as the values of the elastic medium constants, the geometrical aspect ratios and DWBNNTs volume fraction increase but it decreases as nonlocal parameter increases.  相似文献   

3.
In the present study, the free vibration response of double-walled carbon nanotubes (DWCNTs) is investigated. Eringen's nonlocal elasticity equations are incorporated into the classical Donnell shell theory accounting for small scale effects. The Rayleigh-Ritz technique is applied to consider different sets of boundary conditions. The displacements are represented as functions of polynomial series to implement the Rayleigh-Ritz method to the governing differential equations of nonlocal shell model and obtain the natural frequencies of DWCNTs relevant to different values of nonlocal parameter and aspect ratio. To extract the proper values of nonlocal parameter, molecular dynamics (MD) simulations are employed for various armchair and zigzag DWCNTs, the results of which are matched with those of nonlocal continuum model through a nonlinear least square fitting procedure. It is found that the present nonlocal elastic shell model with its appropriate values of nonlocal parameter has the capability to predict the free vibration behavior of DWCNTs, which is comparable with the results of MD simulations.  相似文献   

4.
A nonlinear bending analysis is presented for a rectangular Reissner–Mindlin plate with free edges subjected to combined transverse partially distributed load and compressive edge loading and resting on a two-parameter (Pasternak-type) elastic foundation. The formulations are based on the Reissner–Mindlin plate theory considering the first-order shear deformation effect, and including the plate-foundation interaction. The analysis uses a mixed Galerkin-perturbation technique to determine the load–deflection curves and load–bending moment curves. Numerical examples are presented that relate to the performances of moderately thick rectangular plates with free edges subjected to combined loading and resting on Pasternak-type elastic foundations from which results for Winkler elastic foundations are obtained as a limiting case. The influence played by a number of effects, among them foundation stiffness, transverse shear deformation, loaded area, the plate aspect ratio and initial compressive load are studied. Typical results are presented in dimensionless graphical form.  相似文献   

5.
齿轮结构振动固有特性研究   总被引:4,自引:0,他引:4  
建立了齿轮的弹力体力学模型,按照厚壁板理论建立了弹性体振动微分方程,分析了齿轱本体弹性的振动固有特性,并与实验结果进行了对比分析。给齿轮本体的结构振动分析提供了一种研究方法,为齿轮噪声辐射特性的研究奠定了基础。  相似文献   

6.
In this study, based on the three-dimensional theory of elasticity, free vibration characteristics of functionally graded (FG) nanocomposite plates reinforced by randomly-oriented straight single-walled carbon nanotubes (SWCNTs) resting on an elastic foundation are considered. Material properties are graded in the thickness direction of the plate according to the volume fraction power law distribution. An embedded carbon nanotube (CNT) in a polymer matrix and its surrounding inter-phase which is perfectly bonded to surrounding resin is replaced with an equivalent fiber to predict the mechanical properties of the carbon nanotube/polymer composite. The Mori-Tanaka approach is employed to calculate the effective elastic moduli of the plate. The natural frequencies of the plate are obtained by means of the generalized differential quadrature (GDQ) method. Detailed parametric studies have been carried out to investigate the influences of the CNT volume fraction, Winkler foundation modulus, shear elastic foundation modulus and various geometrical parameters on the vibration behavior of the functionally graded carbon nanotube-reinforced (FG-CNTR) plates.  相似文献   

7.
This paper studies the vibration behaviour of circular Mindlin plates with multiple concentric elastic ring supports. Utilizing the domain decomposition technique, a circular plate is divided into several annular segments and one core circular segment at the locations of the elastic ring supports. The governing differential equations and the solutions of these equations are presented for the annular and circular segments based on the Mindlin-plate theory. A homogenous equation system that governs the vibration of circular Mindlin plates with elastic ring supports is derived by imposing the essential and natural boundary and segment interface conditions. The first-known exact vibration frequencies for circular Mindlin plates with multiple concentric elastic ring supports are obtained and the modal shapes of displacement fields and stress resultants for several selected cases are presented. The influence of the elastic ring support stiffness, locations, plate boundary conditions and plate thickness ratios on the vibration behaviour of circular plates is discussed.  相似文献   

8.
The vibration of clamped uniform elliptical plates is investigated using the exact modes of circular plates as shape functions in the Rayleigh-Ritz method. This paper investigates the behaviour of clamped elliptical plates using modified polar coordinates and the exact modes of circular plates in terms of Bessel and modified Bessel functions. The elements of the mass and stiffness matrices are expressed in closed form using Lommel integrals. The accuracy and the convergence of this approach are validated, and numerical results for natural frequencies for various plate aspect ratios are presented.  相似文献   

9.
The natural vibrations of thick and thin rhombic plates with clamped and simply supported edges are analyzed, using assemblages of nine-node Lagrangian isoparametric quadrilateral C0 continuous finite elements based on a higher-order shear deformable thick plate theory. Here, additional nodal displacement degrees of freedom are derived by retaining higher-order powers of the thickness coordinate in the in-plane displacement fields, which in turn allows for the proper representation of the transverse shear strains of thick plates. Essential rotary inertia terms are derived and included in the present analysis. Nondimensional frequencies are calculated for thick and thin rhombic plates having various combinations of clamped and simply supported edge conditions, and skew angles. The efficacy of using higher-order shear deformable plate finite elements for predicting the in-plane vibration modes of rhombic plates is found to increase as the span-to-thickness ratio decreases and the skew angle increases. The present work shows that higher-order shear deformable finite elements essentially eliminate the transverse shear over-correction of thick rhombic plate frequencies that is produced when finite elements based on the widely used first-order Reissner-Mindlin plate theory are utilized.  相似文献   

10.
Natural frequencies and buckling stresses of cross-ply laminated composite circular cylindrical shells are analyzed by taking into account the effects of higher-order deformations such as transverse shear and normal deformations, and rotatory inertia. By using the method of power series expansion of displacement components, a set of fundamental dynamic equations of a two-dimensional higher-order theory for laminated composite circular cylindrical shells made of elastic and orthotropic materials is derived through Hamilton's principle. Several sets of truncated approximate higher-order theories are applied to solve the vibration and buckling problems of laminated composite circular cylindrical shells subjected to axial stresses. The total number of unknowns does not depend on the number of layers in any multilayered shells. In order to assure the accuracy of the present theory, convergence properties of the first natural frequency and corresponding buckling stress for the fundamental mode r=s=1 are examined in detail. The internal and external works are calculated and compared to prove the numerical accuracy of solutions. Modal transverse shear and normal stresses can be calculated by integrating the three-dimensional equations of equilibrium in the thickness direction, and satisfying the continuity conditions at the interface between layers and stress boundary conditions at the external surfaces. It is noticed that the present global higher-order approximate theories can predict accurately the natural frequencies and buckling stresses of simply supported laminated composite circular cylindrical shells within small number of unknowns.  相似文献   

11.
New analytical solutions for free vibration of thick nanostructures are presented based on the nonlocal elastic stress field theory and the Timoshenko shear deformable nanobeam model. By applying the variational principle, new governing equations of motion and higher-order boundary conditions for these thick nanobeams are derived and their physical characteristics interpreted. The nonlinear history of straining involving higher-order strain gradients is considered in the derivation of strain energy and the contribution of higher-order strain gradients results in non-classical equations of motion thereby indicating that direct replacement of stress and moment quantities into the classical equations of motion is invalid. The Timoshenko nanobeam models are well suited for modeling and investigating the nonlocal behaviors of size-dependent carbon nanotubes. The effects of nanobeam size and various boundary conditions including simple supports, free and clamp constraints, such as a cantilevered nanotube, on the natural vibration frequency of nanotubes are discussed. The effects of nonlocal nanoscale are confirmed by comparing with molecular dynamic simulation solutions for (5,5) and (10,10) carbon nanotubes with four types of boundary conditions. The influence by nanoscale effect on the frequency ratio of nanotubes with different diameters is investigated. Further analysis based on the analytical nonlocal Timoshenko nanobeam model and the Euler–Bernoulli nanobeam model shows that the frequency ratio is more sensitive to nonlocal effect for free vibration of a nonlocal nanostructure if shear deformation is considered.  相似文献   

12.
卞平艳  赵波  李瑜 《工具技术》2012,46(4):20-24
对各种非局部弹性核函数进行分析比较,通过考虑超声激励参量的影响因素,建立了超声激励下的非局部弹性核参量公式,推导出了超声激励下的非局部弹性核函数公式,并对弹性核函数的衰减特性和作用条件进行了研究,并依据此公式对非局部超声振动下的应力进行预测计算,得出应力衰减现象能够通过频域内的非局部核函数衰减来解释。  相似文献   

13.
Using the refined sinusoidal shear deformation plate theory and including plate-foundation interaction, a thermoelastic bending analysis is presented for a simply supported, rectangular, functionally graded material plate subjected to a transverse uniform load and a temperature field, and resting on a two-parameter (Pasternak model) elastic foundation. The present shear deformation theory is simplified by enforcing traction-free boundary conditions at the plate faces. No transversal shear correction factors are needed because a correct representation of the transversal shearing strain is given. Material properties of the plate are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The equilibrium equations of the present plate are given based on various plate theories. A number of examples are solved to illustrate the numerical results concerning bending response of homogeneous and functionally graded rectangular plates resting on two-parameter elastic foundations from which results for Winkler elastic foundations are obtained as a limiting case. The influences played by transversal shear deformation, plate aspect ratio, side-to-thickness ratio, volume fraction distributions, and elastic foundation parameters are studied.  相似文献   

14.
Presented herein is a canonical exact deflection expression for stepped (or piecewise-constant thickness) circular plates under rotationally symmetric transverse loads. The circular plates may be either simply supported or clamped at the edges. As the plates may be very thick or certain portions of the optimal design may become rather thick, the significant effect of transverse shear deformation on the deflections cannot be ignored. This effect was taken into consideration in accordance to the Mindlin plate theory. Based on the analytical deflection expression, necessary conditions are derived for the optimal values of segmental lengths and thicknesses that minimize the maximum deflection of stepped circular plates of a given volume. These optimality conditions are solved using the Newton method for the optimal segmental lengths and thicknesses. Local minima are observed for this nonlinear problem at hand and they may pose some difficulties in getting the solutions. The shear deformation effect increases the plate deflections, but interestingly it affects the thickness variation marginally.  相似文献   

15.
Elliptical and circular fibre reinforced composite plates are important structural elements in modern engineering structures. Vibration analysis of these elements are of interest to structural designers. The present paper deals with the free transverse vibration analysis of symmetrically laminated solid and annular elliptic and circular plates with several complicating effects.The approach developed is based on the Rayleigh–Ritz method where the deflection of the plate is approximated by a general shape function of polynomial type.The analysis includes several complicating effects, such as the presence of an internal hole, an internal ring support, several concentrated masses and the boundary elastically restrained against rotation and translation.Several examples are solved and some results which correspond to particular cases are compared with existing values in the literature. New results are also presented for cross-ply and angle-ply elliptical and circular laminates with different boundary conditions.The algorithm developed can be applied to a wide range of elastic restraint conditions, to any aspect ratio and to higher modes. The effect of the restraint parameters along the boundary on the natural frequencies for plates with these complicating effects is considered.  相似文献   

16.
The present work presents further development of the linking relationships between vibration frequencies predicted by different theories, and they are extended from a flat plate to a spherical shallow shell. In analogy with the membrane vibration problem, exact correspondences are found for vibration frequencies of a functionally graded spherical shallow shell using the classical theory and the first-order and third-order shear deformation theories. Only the predominantly stretching and thickness-shear vibration of dilatational type and predominantly flexural vibration are considered in this work. They are decoupled from the predominantly stretching and thickness-shear vibration of rotational type. These results apply to a simply supported functionally graded spherical shallow shell of polygonal planform with arbitrarily varying material properties in the thickness direction. A Winkler–Pasternak elastic foundation and rotary inertias are incorporated. It is proved that the mathematical analogy warrants positive free vibration frequencies for the shallow shell. Mori–Tanaka's scheme is used to estimate the material properties in the numerical results.  相似文献   

17.
Postbuckling analysis is presented for a simply supported, shear deformable laminated plate subjected to biaxial compression combined with uniform lateral pressure and resting on an elastic foundation. The lateral pressure is first converted into an initial deflection and the initial geometrical imperfection of the plate is also taken into account. The formulations are based on the Reddy's higher-order shear deformation plate theory, and including the plate-foundation interaction. The analysis uses a perturbation technique to determine the buckling loads and the postbuckling equilibrium paths. Numerical examples are presented that relate to the performances of perfect and imperfect, antisymmetrically angle-ply and symmetrically cross-ply laminated plates under combined loading and resting on Pasternak-type or softening nonlinear elastic foundations from which results for Winkler elastic foundations are obtained as a limiting case. The effects played by foundation stiffness, transverse shear deformation, plate aspect ratio, total number of plies, fiber orientation, the biaxial load ratio and initial lateral pressure are studied.  相似文献   

18.
This paper describes a study of three-dimensional free vibration analysis of thick circular and annular isotropic and functionally graded (FG) plates with variable thickness along the radial direction, resting on Pasternak foundation. The formulation is based on the linear, small strain and exact elasticity theory. Plates with different boundary conditions are considered and the material properties of the FG plate are assumed to vary continuously through the thickness according to power law. The kinematic and the potential energy of the plate-foundation system are formulated and the polynomial-Ritz method is used to solve the eigenvalue problem. Convergence and comparison studies are done to demonstrate the correctness and accuracy of the present method. With respect to geometric parameters, elastic coefficients of foundation and different boundary conditions some new results are reported which may be used as benchmark solutions for future researches.  相似文献   

19.
Nonlinear thermo free vibration and instability of viscose fluid-conveying double-walled carbon nanocones (DWCNCs) are studied using Hamilton’s principle and differential quadrature method (DQM). The small-size effects on bulk viscosity and slip boundary conditions of nanoflow through Knudsen number (Kn) is considered. The nanocone is simulated as a clamped-clamped Euler-Bernoulli’s beam embedded in an elastic foundation of the Winkler and Pasternak type. The van der Waals (vdW) forces between the inner and outer nanocones are taken into account. The detailed parametric study is conducted, focusing on the combined effects of the nonlocal parameter, apex angles, aspect ratio, temperature change, fluid viscosity, boundary conditions and the elastic medium coefficient on the dimensionless frequency and critical fluid velocity of DWCNCs. The results show that the small-size effect on flow field is remarkable on frequency and critical fluid velocity of DWCNC. Also, the nonlinear frequency and critical flow velocity decrease with increasing the nonlocal parameter and cone semi-vertex angle. The results are in good agreement with the previous researches.  相似文献   

20.
A novel DSC-element method is proposed to investigate the free vibration of moderately thick plates based on the well-known Mindlin first-order shear deformation plate theory. The development of the present approach not only employs the concept of finite element method, but also implements the discrete singular convolution (DSC) delta type wavelet kernel for the transverse vibration analysis. This numerical algorithm is allowed dividing the domain of Mindlin plates into a number of small discrete rectangular elements. As compared with the global numerical techniques i.e. the DSC-Ritz method, the flexibility is increased to treat complex boundary constraints. For validation, a series of numerical experiments for different meshes of Mindlin plates with assorted combinations of edge supports, plate thickness and aspect ratios is carried out. The established natural frequencies are directly compared and discussed with those reported by using the finite element and other numerical and analytical methods from the open literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号