首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modelling and reducing uncertainty are two essential problems with mobile robot localisation. Previously we developed a robot localisation system, namely, the Gaussian Mixture of Bayes with Regularised Expectation Maximisation (GMB-REM), which introduced the sensor selection technique. GMB-REM allows a robot"s position to be modelled as a probability distribution and uses Bayes" theorem to reduce the uncertainty of its location. A new sensor selection technique incorporated with sensor fusion is introduced in this paper. Actually the new technique is realised by incorporating with the sensor fusion scheme. Empirical results show that the new system outperforms the previous GMB-REM with sensor selection alone. More specifically, we illustrate that the new technique is able to considerably constrain the error of a robot"s position.  相似文献   

2.
可移动机器人在中心对称环境中的自定位算法   总被引:1,自引:0,他引:1  
可移动机器人的自定位问题是智能机器人研究中的重要课题,它包含许多传感器技术和定位算法,马尔可夫定位算法的优点是可以使机器人在全局不确定的情况下估计它的位置。这种方法采用概率分布描述机器人的位置信度,机器人通过在运动过程中所获得的传感器数据和运动记录来更新信度分布,然后采用最高信度值来估计它所在的位置。对于只有距离测量传感器的机器人在中心对称环境中仅仅采用马尔可夫自定位法还是无法确定其位置,为了解决中心对称的环境中所存在的问题,建议在机器人上装上陀螺仪或指南针,定义一个角度高斯分布函数,并利用这个函数建立新的机器人感知模型来扩展马尔可夫定位算法,通过仿真程序对多种对称情况进行实验,验证了这一新算法的可行性,这个扩展马尔可夫自定位算法不仅可使机器人在中心对称环境中很快地确定自己的位置,而且可以加快非对称环境中信度分布收敛到真实位置的速度。  相似文献   

3.
This paper proposes a new technique for vision-based robot navigation. The basic framework is to localise the robot by comparing images taken at its current location with reference images stored in its memory. In this work, the only sensor mounted on the robot is an omnidirectional camera. The Fourier components of the omnidirectional image provide a signature for the views acquired by the robot and can be used to simplify the solution to the robot navigation problem. The proposed system can calculate the robot position with variable accuracy (‘hierarchical localisation’) saving computational time when the robot does not need a precise localisation (e.g. when it is travelling through a clear space). In addition, the system is able to self-organise its visual memory of the environment. The self-organisation of visual memory is essential to realise a fully autonomous robot that is able to navigate in an unexplored environment. Experimental evidence of the robustness of this system is given in unmodified office environments.  相似文献   

4.
Wheel odometry is a common method for high resolution relative localisation. However, wheel odometry relies on the integrity and accuracy of a kinematic model. In this paper, a new method for relative localisation, ‘visiodometry’, which does not rely on a kinematic model, is proposed. The system consists of two ground-facing cameras mounted on either side of the robot. From the sequence of images acquired, the relative change in pose of the robot is estimated using a phase correlation based method. Results on a plain coloured carpeted surface, show that the method provides a truly odometric type sensor data input similar in modality and resolution to wheel odometry. A method to calibrate the visiodometry system using a 1D object is also presented.  相似文献   

5.
This article deals with uncertainty and imprecision treatment during the mobile robot localization process. The imprecision determination is based on the use of the interval formalism. Indeed, the mobile robot is equipped with an exteroceptive sensor and odometers. The imprecise data given by these two sensors are fused by constraint propagation on intervals. At the end of the algorithm, we get 3D localization subpaving which is supposed to contain the robot’s position in a guaranteed way. Concerning the uncertainty, it is managed through a propagation architecture based on the use of the Transferable Belief Model of Smets. This architecture enables to propagate uncertainty from low level data (sensor data) in order to quantify the global uncertainty of the robot localization estimation.
Anne-Marie Jolly-DesodtEmail:
  相似文献   

6.
《Advanced Robotics》2013,27(8):751-771
We propose a new method of sensor planning for mobile robot localization using Bayesian network inference. Since we can model causal relations between situations of the robot's behavior and sensing events as nodes of a Bayesian network, we can use the inference of the network for dealing with uncertainty in sensor planning and thus derive appropriate sensing actions. In this system we employ a multi-layered-behavior architecture for navigation and localization. This architecture effectively combines mapping of local sensor information and the inference via a Bayesian network for sensor planning. The mobile robot recognizes the local sensor patterns for localization and navigation using a learned regression function. Since the environment may change during the navigation and the sensor capability has limitations in the real world, the mobile robot actively gathers sensor information to construct and reconstruct a Bayesian network, and then derives an appropriate sensing action which maximizes a utility function based on inference of the reconstructed network. The utility function takes into account belief of the localization and the sensing cost. We have conducted some simulation and real robot experiments to validate the sensor planning system.  相似文献   

7.
In this paper, we propose a multi-sensor fusion algorithm based on particle filters for mobile robot localisation in crowded environments. Our system is able to fuse the information provided by sensors placed on-board, and sensors external to the robot (off-board). We also propose a methodology for fast system deployment, map construction, and sensor calibration with a limited number of training samples. We validated our proposal experimentally with a laser range-finder, a WiFi card, a magnetic compass, and an external multi-camera network. We have carried out experiments that validate our deployment and calibration methodology. Moreover, we performed localisation experiments in controlled situations and real robot operation in social events. We obtained the best results from the fusion of all the sensors available: the precision and stability was sufficient for mobile robot localisation. No single sensor is reliable in every situation, but nevertheless our algorithm works with any subset of sensors: if a sensor is not available, the performance just degrades gracefully.  相似文献   

8.
Selecting Landmarks for Localization in Natural Terrain   总被引:1,自引:0,他引:1  
We describe techniques to optimally select landmarks for performing mobile robot localization by matching terrain maps. The method is based upon a maximum-likelihood robot localization algorithm that efficiently searches the space of possible robot positions. We use a sensor error model to estimate a probability distribution over the terrain expected to be seen from the current robot position. The estimated distribution is compared to a previously generated map of the terrain and the optimal landmark is selected by minimizing the predicted uncertainty in the localization. This approach has been applied to the generation of a sensor uncertainty field that can be used to plan a robot's movements. Experiments indicate that landmark selection improves not only the localization uncertainty, but also the likelihood of success. Examples of landmark selection are given using real and synthetic data.  相似文献   

9.
The topic of mobile robot self-localisation is often divided into the sub-problems of global localisation and position tracking. Both are now well understood individually, but few mobile robots can deal simultaneously with the two problems in large, complex environments. In this paper, we present a unified approach to global localisation and position tracking which is based on a topological map augmented with metric information. This method combines a new scan matching technique, using histograms extracted from local occupancy grids, with an efficient algorithm for tracking multiple location hypotheses over time. The method was validated with experiments in a series of real world environments, including its integration into a complete navigating robot. The results show that the robot can localise itself reliably in large, indoor environments using minimal computational resources.  相似文献   

10.
海丹  李勇  张辉  李迅 《智能系统学报》2010,5(5):425-431
定位问题是移动机器人研究领域中最基本的问题,在Bayes的框架下研究了机器人与无线传感器网络(WSN)组成系统中的同时建图与定位问题(SLAM).针对该系统中只存在距离测量信息可用的情况提出了一种基于粒子滤波的SLAM算法.该方法将机器人状态和节点位置估计设置为一组全局估计粒子,通过对粒子及其权重的更新来计算整个系统的状态.算法将WSN节点的位置估计在机器人的路径上分解为相互独立的估计,从而将全局粒子的计算转化为使用一个机器人状态滤波器和对应于每个机器人粒子的节点位置滤波器进行计算.针对观测信息低维的特点,设计了处理低维观测信息的方法,使得观测信息可以在滤波阶段得到合理利用.并且详细介绍了提出的SLAM算法原理和计算过程,并通过仿真实验证明了算法的有效性和实用性.  相似文献   

11.
This paper presents a remote manipulation method for mobile manipulator through operator’s gesture. In particular, a track mobile robot is equipped with a 4-DOF robot arm to grasp objects. Operator uses one hand to control both the motion of mobile robot and the posture of robot arm via scheme of gesture polysemy method which is put forward in this paper. A sensor called leap motion (LM), which can obtain the position and posture data of hand, is employed in this system. Two filters were employed to estimate the position and posture of human hand so as to reduce the inherent noise of the sensor. Kalman filter was used to estimate the position, and particle filter was used to estimate the orientation. The advantage of the proposed method is that it is feasible to control a mobile manipulator through just one hand using a LM sensor. The effectiveness of the proposed human–robot interface was verified in laboratory with a series of experiments. And the results indicate that the proposed human–robot interface is able to track the movements of operator’s hand with high accuracy. It is found that the system can be employed by a non-professional operator for robot teleoperation.  相似文献   

12.
罗建  陈洁  马定坤  白鑫 《测控技术》2010,29(1):73-76
针对目前移动机器人同时定位与地图创建(SLAM)研究中多采用激光雷达或超声环作为测距传感器导致系统复杂、成本高的问题,提出了一种利用舵机带动单超声传感器扫描的低成本设计方案。在高斯超声模型基础上,利用贝叶斯公式对栅格地图进行概率更新,并结合Sobel边缘检测算法提取特征点,实现了由不确定的移动机器人坐标系向固定的以环境特征点为原点的全局环境坐标系的转换及全局定位,为在相同环境下通过重复实验进行多地图融合研究奠定了基础。该低成本移动机器人设计的有效性通过实验得以验证。  相似文献   

13.
Multisensor Fusion: An Autonomous Mobile Robot   总被引:7,自引:0,他引:7  
A conventional autonomous mobile robot is introduced. The main idea is the integration of many conventional and sophisticated sensor fusion techniques, introduced by several authors in recent years. We show the actual possibility of integrating all these techniques together, rather than analyzing implementation details. The topics of multisensor fusion, observation integration and sensor coordination are widely used throuhout the article. The final goal is to demonstrate the validity of both mathematical and artificial intelligence techniques in guaranteeing vehicle survival in a dynamic environment, while the robot carries out a specific task. We review conventional techniques for the management of uncertainty while we describe an implementation of a mobile robot which combines on-line heterogeneous sensors in its navigation and localisation tasks.  相似文献   

14.
一种优化的贝叶斯估计多传感器数据融合方法   总被引:1,自引:0,他引:1  
由于来自多个传感器的测量数据总是有一定程度的不确定性和不一致性,采用多传感器数据融合算法将多个节点的测量数据进行数据融合,利用数据的冗余度来减小这种不确定性,得到高可靠性的数据信息。提出了一种优化的贝叶斯估计多传感器数据融合方法,将贝叶斯估计和卡尔曼滤波器结合起来,应用于无线传感网络数据融合中。根据滤波器应用到传感数据、融合数据或者两者的方式,提出3种不同的技术,即:前向滤波法、后向滤波法和前后向滤波法。通过一个实例研究估计移动机器人的位置,验证算法的有效性。实验表明,在集中式和分布式两个方面数据融合体系结构,结合卡尔曼滤波器的贝叶斯融合算法能够有效地解决数据的不确定性和不一致性。  相似文献   

15.
为了利用”凝视视觉几何约束”的信息来确定移动机器人的位置和方位角,就需要解决数据融合的问题。”几何约束”不是来自真实传感器的直接可测量的数据,这种特殊形式的信息不能被直接融合。为此目的,该文提出了一种融合特殊形式信息的新途径,也即利用”软传感器”的方法来融合来自”几何约束”的信息。软传感器的输出与其它真实传感器的输出一起经过扩展信息滤波器最终实现融合。文中最后提供了利用该方法进行移动机器人定位的计算机仿真例子。仿真结果表明了软传感器信息融合方法的可行性和有效性。软传感器可以广泛应用在很多类似的信息融合问题中。  相似文献   

16.
在机器人自主避障过程中,由于传感器数据的误差会降低机器人感知和决策的准确性,从而影响机器人自主避障能力。为此,提出高精度激光测距下的机器人自主避障控制方法。通过设计机器人体系结构,建立机器人运动学模型,为机器人避障控制提供依据。采用高精度激光测距技术,构建机器人移动场地地形。通过自适应阈值方法,完成机器人的自主避障控制。实验结果表明,所提方法的机器人自主避障控制效果好,且障碍物位置测试值与实际位置值的误差保持在0.5m以内,具有较高的避障控制精确度。  相似文献   

17.
In this paper an extended Kalman filter (EKF) is used in the simultaneous localisation and mapping (SLAM) of a four-wheeled mobile robot in an indoor environment. The robot’s pose and environment map are estimated from incremental encoders and from laser-range-finder (LRF) sensor readings. The map of the environment consists of line segments, which are estimated from the LRF’s scans. A good state convergence of the EKF is obtained using the proposed methods for the input- and output-noise covariance matrices’ estimation. The output-noise covariance matrix, consisting of the observed-line-features’ covariances, is estimated from the LRF’s measurements using the least-squares method. The experimental results from the localisation and SLAM experiments in the indoor environment show the applicability of the proposed approach. The main paper contribution is the improvement of the SLAM algorithm convergence due to the noise covariance matrices’ estimation.  相似文献   

18.
Many robot controllers require not only joint position measurements but also joint velocity measurements; however, most robotic systems are only equipped with joint position measurement devices. In this paper, a new output feedback tracking control approach is developed for the robot manipulators with model uncertainty. The approach suggested herein does not require velocity measurements and employs the adaptive fuzzy logic. The adaptive fuzzy logic allows us to approximate uncertain and nonlinear robot dynamics. Only one fuzzy system is used to implement the observer-controller structure of the output feedback robot system. It is shown in a rigorous manner that all the signals in a closed loop composed of a robot, an observer, and a controller are uniformly ultimately bounded. Finally, computer simulation results on three-link robot manipulators are presented to show the results which indicate good position tracking performance and robustness against payload uncertainty and external disturbances.  相似文献   

19.
This paper describes a synthesising method for multi-robot collaborative localisation. A distributed extended Kalman filter (EKF) based on robot odometry and external North Star signals for data fusion is first designed for the localisation of individuals in the robot group. Relying on relative observation by infrared sensors and gyroscopes mounted on robots, and the ‘uncertainty volume’ strategy, the positions estimated by EKFs are further corrected for precising the localisation process. The localisation accuracy based on different sensing regimes is tested. Sensor correlations and uncertainties are analysed for predicting error propagation and to accommodate sensing deviations. The multi-source signals are then synthesised for the collaborative localisation for a multi-robot system without introducing excessive computation. Finally, this work is verified by both simulation and experiments with real robots, i.e. the Festo Robotinos under different scenarios.  相似文献   

20.
When a vision sensor is used in conjunction with a robot, hand-eye calibration is necessary to determine the accurate position of the sensor relative to the robot. This is necessary to allow data from the vision sensor to be defined in the robot's global coordinate system. For 2D laser line sensors hand-eye calibration is a challenging process because they only collect data in two dimensions. This leads to the use of complex calibration artefacts and requires multiple measurements be collected, using a range of robot positions. This paper presents a simple and robust hand-eye calibration strategy that requires minimal user interaction and makes use of a single planar calibration artefact. A significant benefit of the strategy is that it uses a low-cost, simple and easily manufactured artefact; however, the lower complexity can lead to lower variation in calibration data. In order to achieve a robust hand-eye calibration using this artefact, the impact of robot positioning strategies is considered to maintain variation. A theoretical basis for the necessary sources of input variation is defined by a mathematical analysis of the system of equations for the calibration process. From this, a novel strategy is specified to maximize data variation by using a circular array of target scan lines to define a full set of required robot positions. A simulation approach is used to further investigate and optimise the impact of robot position on the calibration process, and the resulting optimal robot positions are then experimentally validated for a real robot mounted laser line sensor. Using the proposed optimum method, a semi-automatic calibration process, which requires only four manually scanned lines, is defined and experimentally demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号