首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
氟盐冷却球床堆是当前国际上一种新的研究堆型,尚无已经建造完成的反应堆,因此,选择相似且具有运行经验的反应堆作为基准题有助于堆芯核设计软件适用性分析。利用国际上常采用的相似性分析软件,可对熔盐实验堆(Molten Salt Reactor Experiment,MSRE)及10 MW高温气冷堆(10 MW high-temperature gas-cooled test reactor,HTR-10)与氟盐冷却球床堆的相似性进行分析,定量判断它们作为基准题的合理性。分析结果表明,MSRE和氟盐冷却球床堆的能谱峰位能量接近且堆内元素种类相近,二者相似程度较高;常温临界HTR-10和氟盐冷却球床堆冷却剂不同,且能谱峰位能量差异较大,二者相似程度较低。因此,MSRE是氟盐冷却球床堆中子物理设计软件较理想的基准题。  相似文献   

2.
Experimental facilities like HTR-10, HTTR, and ASTRA serve as the source of information for the currently designed high temperature gas-cooled nuclear reactors. It is also desired to verify the existing codes against the data obtained in such facilities. In this study, first criticality calculations of a pebble bed gas-cooled reactor, HTR-10, is performed with MCNP-4B, a code system for Monte Carlo particle transport simulation. HTR-10 has rather unique characteristics in terms of the randomness in geometry as in the case of all pebble bed reactors. The geometrical model of the full reactor is obtained by using lattice and universe facilities provided by MCNP. Modeling details are discussed with necessary simplifications. Results obtained by Monte Carlo simulations are compared with available data. It is observed that Monte Carlo simulations yield sufficiently accurate results in terms of initial criticality of the HTR-10 reactor.  相似文献   

3.
HTR-10堆芯球流运动的唯象学DEM模拟   总被引:1,自引:1,他引:0  
清华大学研发的10 MW高温气冷堆(HTR-10)是国际上重要的先进实验反应堆,球流运动的研究具有基础性地位。通过唯象的方法对HTR-10堆芯的球流运动进行了离散元数值模拟,通过已由实验验证的计算程序,采用与HTR-10堆芯1∶1的计算模型,计算了27 000个元件单元的运动,包括不同摩擦系数f和不同底部锥角A下的球流运动。结果表明:在HTR-10堆芯设计条件下,球流运动较均匀,堆芯底部不存在滞留区;f越大或A越大,堆芯球流越均匀,表现出更好的整体性向下运动;当f达到0.8上限时,HTR-10堆芯球流依然保持了整体性运动,底部无任何被滞留的球。本工作对进一步优化球床式高温气冷堆堆芯设计具有重要意义。  相似文献   

4.
The thermal hydraulic calculations of the 10 MW high temperature gas-cooled-test module (HTR-10) are among the most important indications to judge the reactor performance under design conditions. The power distribution, the temperature distribution and the flow distribution of the HTR-10 are calculated for initial and equilibrium core in this paper. The temperature distribution includes the temperature parameters of fuel elements, the helium coolant and the main components in the reactor. In the temperature calculation of fuel elements, several uncertain factors are considered carefully, including non-uniform burnup, power distribution deviation, manufacture deviation of fuel elements, graphite balls mixed with fuel balls in the core, calculation deviation of heat transfer and so on. In the flow distribution calculation, the conservative pebble bed core flow value is selected. The results show that the maximum fuel temperature is much lower than the limitation and the flow distribution can meet the cooling requirement in the reactor core.  相似文献   

5.
对燃料球进行高效准确的燃耗测量是球床式高温气冷堆实现高利用因子运行的关键环节.10MW高温气冷堆燃耗测量目前未能实现自动运行.结合燃料装卸系统设计原理及燃料循环过程运行特点,对HTR-10原手动燃耗测量提出改进,实现了自动燃耗测量.现场运行结果表明,该方法逻辑准确、可靠性高,能够有效避免人为因素造成的误操作.  相似文献   

6.
球床高温堆平衡态燃耗计算程序的开发   总被引:1,自引:1,他引:0  
基于MCNP5和ORIGEN2耦合方法,开发了平衡态下球床高温堆的燃耗计算程序PBRE,用于堆的性能价值分析。为节省蒙特卡罗计算时间,对迭代收敛的方法进行优化,使之可在10个迭代步内收敛。使用PBRE对清华大学HTR-10进行建模计算,得到的平均卸料燃耗深度与文献报道值一致,表明PBRE程序适用于球床堆平衡态的燃耗分析。  相似文献   

7.
Conditions for design parameters of above-ground and underground, prismatic high-temperature gas-cooled reactor (HTGR)s for passive decay heat removal based on fundamental heat transfer mechanisms were obtained in the previous works. In the present study, analogous conditions were obtained for pebble bed reactors by performing the same procedure using the model for heat transfer in porous media of COMSOL 4.3a software, and the results were compared. For the power density profile, several approximated distributions together with original one throughout the 10-MWt high-temperature gas-cooled reactor-test module (HTR-10) were used, and it was found that an HTR-10 with a uniform power density profile has the higher safety margin than those with other profiles. In other words, the safety features of a PBR can be enhanced by flattening the power density profile. We also found that a prismatic HTGR with a uniform power density profile throughout the core has a greater safety margin than a PBR with the same design characteristics. However, when the power density profile is not flattened during the operation, the PBR with the linear power density profile has more safety margin than the prismatic HTGR with the same design parameters and with the power density profile by cosine and Bessel functions.  相似文献   

8.
The modular high-temperature gas-cooled reactor (MHTGR) has distinct advantages in terms of inherent safety, economics potential, high efficiency, potential usage for hydrogen production, etc. The Chinese design of the MHTGR, named as high-temperature gas-cooled reactor-pebble bed module (HTR-PM), based on the technology and experience of the HTR-10, is currently in the conceptual phase. The HTR-PM demonstration plant is planned to be finished by 2012. The main philosophy of the HTR-PM project can be pinned down as: (1) safety, (2) standardization, (3) economy, and (4) proven technology. The work in the categories of marketing, organization, project and technology is done in predefined order. The biggest challenge for the HTR-PM is to ensure its economical viability while maintaining its inherent safety. A design of a 450 MWth annular pebble bed core connected with steam turbine is aimed for and presented in this paper.  相似文献   

9.
魏仁杰 《核动力工程》1998,19(4):289-292
球床包层混合堆与板状元件包层混合堆相比较,前者在核燃料生产和安全方面可能具有更多的优越性。本应用THERMIX程序和辅助程序对我国开发的托卡马克堆芯氮气冷却球床包层聚变-裂变合堆的包层进行了热工计算。计算中考虑了不同的燃料球材料及稳态,卸压和断流事故工况。计算结果表明,只要选用合适的燃料球材料和设置适当的控制保护系统,具有快速卸料罐的托卡马克堆芯氦气包层聚变-裂变混合堆的概念设计在安全上的可行的。  相似文献   

10.
有效导热系数是高温气冷球床堆热工设计和安全分析程序中的基本参数,ZBS模型广泛应用于球床结构有效导热系数的预测。本文针对ZBS模型中的关键经验型参数——接触面积系数φ进行了分析,通过对不同堆积结构球床有效导热系数的数值分析,获得了12组接触直径比和配位数及其对应的φ值,然后通过多元线性分析获得φ的计算公式。与德国SANA实验结果进行比较,发现改进后的ZBS模型预测能力优于其他模型。改进后的ZBS模型的计算结果与先前实验测量的球床主体区域的有效导热系数吻合也很好。本文研究结果可为高温气冷球床堆的设计和安全分析提供理论支持。  相似文献   

11.
核反应堆数字化仪表和控制系统与传统的以模拟仪表的构成的仪表与控制系统相比,具有明显的优越性,本文介绍了10MW高温气冷实验堆(HTR-10)数字化运行仪表和控制系统的设计与实施,包括系统结构,主要技术特点,系统主要功能等,并给出了系统的现场调试和运行情况。  相似文献   

12.
In January 2003, the 10MW High-temperature Gas-cooled Reactor (HTR-10) reached its full power for continuous operation of seventy-two hours in the Institute of Nuclear Energy Technology, Tsinghua University. The reactor was operated smoothly at the designated parameters. The once-through steam generator (SG) is one of key equipments of the HTR-10 reactor. The SG includes 30 modular heating helical tube assemblies. Design of the SG includes hydraulics, heat transfer and stability designs. Based on the design requirement, it is necessary to ensure sufficient heat removal from the reactor in order to maintain stable operation. In order to confirm the thermal hydraulic reliability of the SG, a series of experiments had been carried out. The purpose of this paper is to introduce the design features and experimental verification of HTR-10 SG, and the research results of small bending radius helical coil-pipe used in HTR-10, for example, the heat transfer coefficient of water, superheat steam and the two phase flow in the helical tube, the heat transfer coefficient of the He flow across the helical tube, and the centrifugal force effect on the heat transfer for the helical tube. In the paper, some operational experimental data of the HTR-10 SG have been presented.  相似文献   

13.
球床堆卸料管中燃料效应的研究   总被引:1,自引:0,他引:1  
介绍了球床式高温气冷堆卸料管中燃料倒料的模拟方法,并以10MW高温气冷堆为实例,使用CHTRP程序计算和分析了卸料管中燃料对反应堆物理及热工性能的影响,给出了卸料管中的功率分布及温度分布,这对进一步研究反应堆物理和安全分析是很重要的。  相似文献   

14.
为验证在中国先进研究堆(CARR)内进行国际热核聚变实验堆(ITER)氚增殖包层模块(TBM)辐照实验的可行性和安全性,进行了氚增殖剂球床组件堆内辐照物理及热工计算分析。氚增殖剂包层模块主要是固态氚增殖剂陶瓷球床。本文采用Monte Carlo粒子输运模拟程序对氚增殖剂球床进行堆内建模,计算球床的中子注量率、能量沉积和产额,得到不同功率下球床的中子注量率、发热功率和产氚速率以及球床组件引入反应堆的反应性。根据物理计算得到的组件各部件发热情况建立热工计算一维模型,通过更改反应堆功率得到满足实验要求的工况并采用三维程序进行验证。物理与热工计算分析的结果表明,在反应堆运行功率为20 MW的工况下球床组件各部件的温度均不超过限值。  相似文献   

15.
The pebble bed modular reactor (PBMR) is the first pebble bed reactor that will be utilised in a high temperature direct Brayton cycle configuration. This implies that there are a number of unique features in the PBMR that extend from the German experience base. One of the challenges in the design of the PBMR is developing an understanding of the expected behaviour of the reactor through analyses and simulations and managing the integrated design process between the designers, the physicists and the analysts.This integrated design process is managed through model-based development work. Three-dimensional CAD models are constructed of the components and parts in the reactor. From the CAD models, CFD models, neutronic models, shielding models, FEM models and other thermodynamic models are derived. These models range from very simple models to extremely detailed and complex models. The models are used in legacy software as well as commercial off-the-shelf software. The different models are also used in code-to-code comparisons to verify the results.This paper will briefly discuss the different models and the interaction between the models, and how the models are used in the iterative design process that is used in the development of the reactor at PBMR.  相似文献   

16.
Graphite dust produced via mechanical wear from the pebbles in a pebble bed reactor is an area of concern for licensing. Both the German pebble bed reactors produced graphite dust that contained activated elements. These activation products constitute an additional source term of radiation and must be taken under consideration during the conduct of accident analysis of the design. This paper discusses the available literature on graphite dust production and measurements in pebble bed reactors. Limited data is available on the graphite dust produced from the AVR and THTR-300 pebble bed reactors. Experiments that have been performed on wear of graphite in pebble-bed-like conditions are reviewed. The calculation of contact forces, which are a key driving mechanism for dust in the reactor, are also included. In addition, prior graphite dust predictions are examined, and future areas of research are identified.  相似文献   

17.
在研究堆内进行辐照在线产氚试验是ITER计划专项国内配套研究项目之一。本工作主要针对研究堆内辐照氦冷陶瓷氚增殖剂包层(简称陶瓷)球床组件的试验技术要求,评估辐照陶瓷球床组件设计方案的可行性。通过对不同的陶瓷球床组件结构参数和组件在堆内的不同辐照位置,进行热工流体力学设计计算,得到满足要求的入堆辐照陶瓷球床组件设计方案。  相似文献   

18.
After the nuclear accidents of Three Mile Island and Chernobyl the world nuclear community made great efforts to increase research on nuclear reactors and to develop advanced nuclear power plants with much improved safety features. Following the successful construction and a most gratifying operation of the 10 MWth high-temperature gas-cooled test reactor (HTR-10), the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University has developed and designed an HTR demonstration plant, called the HTR-PM (high-temperature-reactor pebble-bed module). The design, having jointly been carried out with industry partners from China and in collaboration of experts worldwide, closely follows the design principles of the HTR-10.Due to intensive engineering and R&D efforts since 2001, the basic design of the HTR-PM has been finished while all main technical features have been fixed. A Preliminary Safety Analysis Report (PSAR) has been compiled.The HTR-PM plant will consist of two nuclear steam supply system (NSSS), so called modules, each one comprising of a single zone 250 MWth pebble-bed modular reactor and a steam generator. The two NSSS modules feed one steam turbine and generate an electric power of 210 MW.A pilot fuel production line will be built to fabricate 300,000 pebble fuel elements per year. This line is closely based on the technology of the HTR-10 fuel production line.The main goals of the project are two-fold. Firstly, the economic competitiveness of commercial HTR-PM plants shall be demonstrated. Secondly, it shall be shown that HTR-PM plants do not need accident management procedures and will not require any need for offsite emergency measures.According to the current schedule of the project the completion date of the demonstration plant will be around 2013. The reactor site has been evaluated and approved; the procurement of long-lead components has already been started.After the successful operation of the demonstration plant, commercial HTR-PM plants are expected to be built at the same site. These plants will comprise many NSSS modules and, correspondingly, a larger turbine.  相似文献   

19.
Lithium titanate is a promising solid breeder material for the fusion reactor blanket. Packed lithium titanate pebble bed is considered for the blanket. The thermal energy; that will be produced in the bed during breeding and the radiated heat from the reactor core absorbed must be removed. So, the experimental thermal property data are important for the blanket design. In past, a significant amount of works were conducted to determine the effective thermal conductivity of packed solid breeder pebble bed, in helium atmosphere, but no flow of gas was considered. With increase in gas flow rate, effective thermal conductivity of pebble bed increases. Particle size and void fraction also affect the thermal properties of the bed significantly. An experimental facility with external heat source was designed and installed. Experiments were carried out with lithium-titanate pebbles of different sizes at variable gas flow rates and at different bed wall temperature. It was observed that effective thermal conductivity of pebble bed is a function of particle Reynolds number and temperature. From the experimental data two correlations have been developed to estimate the effective thermal conductivity of packed lithium-titanate pebble bed for different particle Reynolds number and at different temperatures. The experimental details and results are discussed in this paper.  相似文献   

20.
《核技术(英文版)》2016,(2):115-121
Pebble bed reactors enable the circulation of pebble fuel elements when the reactors are in operation.This unique design helps to optimize the burnup and power distribution, reduces the excessive reactivity of the reactor,and provides a mean to identify and segregate damaged fuel elements during operation. The movement of the pebbles in the core, or the kinematics of the pebble bed,significantly affect the above features and is not fully understood. We designed and built a detection system that can measure 3-axis acceleration, 3-axis angular velocity,3-axis rotation angles, and vibration and temperature of multiple pebbles anywhere in the pebble bed. This system uses pebble-shaped detectors that can flow with other pebbles and does not disturb the pebble movement. We used new technologies to enable instant response, precise measurement, and simultaneous collection of data from a large number of detectors. Our tests show that the detection system has a negligible zero drift and the accuracy is better than the designed value. The residence time of the pebbles in a moving pebble bed was also measured using the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号