首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shotgun proteomics typically uses multidimensional LC/MS/MS analysis of enzymatically digested proteins, where strong cation-exchange (SCX) and reversed-phase (RP) separations are coupled to increase the separation power and dynamic range of analysis. Here we report an on-line multidimensional LC method using an anion- and cation-exchange mixed bed for the first separation dimension. The mixed-bed ion-exchange resin improved peptide recovery over SCX resins alone and showed better orthogonality to RP separations in two-dimensional separations. The Donnan effect, which was enhanced by the introduction of fixed opposite charges in one column, is proposed as the mechanism responsible for improved peptide recovery by producing higher fluxes of salt cations and lower populations of salt anions proximal to the SCX phase. An increase in orthogonality was achieved by a combination of increased retention for acidic peptides and moderately reduced retention of neutral to basic peptides by the added anion-exchange resin. The combination of these effects led to approximately 100% increase in the number of identified peptides from an analysis of a tryptic digest of a yeast whole cell lysate. The application of the method to phosphopeptide-enriched samples increased by 94% phosphopeptide identifications over SCX alone. The lower pKa of phosphopeptides led to specific enrichment in a single salt step resolving acidic phosphopeptides from other phospho- and non-phosphopeptides. Unlike previous methods that use anion exchange to alter selectivity or enrich phosphopeptides, the proposed format is unique in that it works with typical acidic buffer systems used in electrospray ionization, making it feasible for online multidimensional LC/MS/MS applications.  相似文献   

2.
Winnik WM 《Analytical chemistry》2005,77(15):4991-4998
Tryptic digests of human serum albumin and human lung epithelial cell lysates were used as test samples in a novel proteomics study. Peptides were separated and analyzed using 2D-nano-LC/MS/MS with strong cation exchange (SCX) and reversed-phase chromatography and continuous gradient elution. The peptide elution conditions combined simultaneous pH gradient with ammonium acetate salt gradient elution modes. A novel empirical SCX peptide elution score was developed, which accounts for both the number of basic and acidic residues and, in part, their location within a sequence of a peptide. Average scores calculated for the fractionated peptide sequences correlated well with the pH of SCX elution fractions. Multiple peptides with identical amino acid sequences, but differing in cysteine tags possessing different positive charge and different SCX elution properties, were obtained by subjecting the samples to reduction and alkylation with different cysteine alkylating reagents: iodoacetamide, 4-vinylpyridine, and (3-acrylamidopropyl) trimethylammonium chloride. The structurally similar peptides were used as elution standards.  相似文献   

3.
Several enrichment and separation strategies are available that allow nearly pure phosphopeptide pools to be created. These phosphopeptide pools are too complex to be completely unraveled by RP-LC-MS analysis alone. Here, we implement weak anion exchange (WAX) chromatography as an additional, complementary dimension to strong cation exchange (SCX) and reversed phase (RP). Initially, we used SCX to fractionate a human lysate digest to generate a fraction highly enriched for phosphopeptides. Analysis of this single fraction by RP-LC-MS with a 140 min gradient method allowed the identification of 4045 unique phosphopeptides (false discovery rate (FDR) < 1%; Mascot score > 20) using an Orbitrap Velos. Triplicate analysis (420 min total gradient time) of the same sample increased the total to just over 5000 unique phosphopeptides. When we separated the same sample by WAX and analyzed 14 WAX fractions by 30 min gradient RP-LC-MS (420 min total gradient time) we were able to identify 7251 unique phosphopeptides, an approximate increase of 40%, while maintaining the same total gradient time. We performed a more comprehensive, albeit also more time-consuming, analysis of the same 14 WAX fractions by the use of 140 min gradient LC-MS analyses, which resulted in the detection of over 11?000 unique phosphopeptides. Our results clearly demonstrate that additional separation dimensions are still necessary for in-depth phosphoproteomics and that WAX is a suitable dimension to be combined and sandwiched between SCX and RP chromatography.  相似文献   

4.
Selective detection of phosphopeptides from proteolytic digests is a challenging and highly relevant task in many proteomics applications. Often phosphopeptides are present in small amounts and need selective isolation or enrichment before identification. Here we report a novel automated method for the enrichment of phosphopeptides from complex mixtures. The method employs a two-dimensional column setup, with titanium oxide-based solid-phase material (Titansphere) as the first dimension and reversed-phase material as the second dimension. Phosphopeptides are separated from nonphosphorylated peptides by trapping them under acidic conditions on a TiO(2) precolumn. Nonphosphorylated peptides break through and are trapped on a reversed-phase precolumn after which they are analyzed by nanoflow LC-ESI-MS/MS. Subsequently, phosphopeptides are desorbed from the TiO(2) column under alkaline conditions, reconcentrated onto the reversed-phase precolumn, and analyzed by nanoflow LC-ESI-MS/MS. The selectivity and practicality of using TiO(2) precolumns for trapping phosphopeptides are demonstrated via the analysis of a model peptide RKISASEF, in a 1:1 mixture of a non- and a monophosphorylated form. A sample of 125 fmol of the phosphorylated peptide could easily be isolated from the nonphosphorylated peptide with a recovery above 90%. In addition, proteolytic digests of three different autophosphorylation forms of the 153-kDa homodimeric cGMP-dependent protein kinase are analyzed. From proteolytic digests of the fully autophosphorylated protein at least eight phosphorylation sites are identified, including two previously uncharacterized sites, namely, Ser-26 and Ser-44. Ser-26 is characterized as a minor phosphorylation site in purified PKG samples, while Ser-44 is identified as a novel in vitro autophosphorylation target. These results clearly show that TiO(2) has strong affinity for phosphorylated peptides, and thus, we conclude that this material has a high potential in the field of phosphoproteomics.  相似文献   

5.
Ye M  Zou H  Liu Z  Ni J  Zhang Y 《Analytical chemistry》2000,72(3):616-621
A novel mode of capillary electrochromatography (CEC), called dynamically modified strong cation-exchange CEC (DMSCX-CEC), is described in this paper. A column packed with a strong cation-exchange (SCX) packing material was dynamically modified with a long-chain quaternary ammonium salt, cetyltrimethylammonium bromide (CTAB), which was added to the mobile phase. CTAB ions were adsorbed onto the surface of the SCX packing material, and the resulting hydrophobic layer on this packing was used as the stationary phase. Using the dynamically modified SCX column, neutral solutes were separated with the CEC mode. The highest number of theoretical plates obtained was about 190,000/m, and the relative standard deviations (RSD's) for migration times and capacity factors of alkylbenzenes were less than 1.0% and 2.0% for five consecutive runs, respectively. The effects of CTAB and methanol concentrations and the pH value of the mobile phase on the electroosmotic flow and the separation mechanism were investigated. Excellent simultaneous separation of the basic and neutral solutes in DMSCX-CEC with a high-pH mobile phase was obtained. A mixture containing the acidic, basic, and neutral compounds was well separated in this mode with a low-pH mobile phase; however, peak tailing for basic compounds was observed in this mobile phase.  相似文献   

6.
Tholey A  Toll H  Huber CG 《Analytical chemistry》2005,77(14):4618-4625
Efficient chromatographic separation is a prerequisite for the sensitive analysis of complex peptide mixtures using liquid chromatography-mass spectrometry. This is especially true for the analysis of mixtures of unmodified and posttranslationally modified peptides, for example, phosphorylated peptides in the presence of their unmodified analogues. Applying monolithic capillary columns based on poly(styrene/divinylbenzene), the influence of acidic eluents based on trifluoroacetic and heptafluorobutyric acid as well as an alkaline eluent based on triethylamine-acetic acid (pH 9.2) on the separation of synthetic phosphopeptides was evaluated. Heptafluorobutyric acid offered the longest retention times and highest selectivities and, hence, the most effective separation. Application of the alkaline eluent in conjunction with detection in negative ion mode electrospray ionization mass spectrometry, on the other hand, allowed the detection of phosphorylated peptides with significantly lower limits of detection, as compared to acidic eluents in combination with detection in positive ion mode. Pairs of phosphorylated and nonphosphorylated synthetic peptides, ranging from 7- to 16-mers, as well as phosphorylated peptides form a tryptic protein digest could be separated both at acidic and alkaline pH. Utilizing a 60 x 0.20-mm-i.d. capillary column, the limit of detection in negative ion detection mode for a 4-fold phosphorylated peptide in a beta-casein digest was 10 fmol. Together with the capability for fast separation of protein digests, monolithic columns, thus, facilitate the effective and sensitive analysis of this important posttranslational modification.  相似文献   

7.
Xu CF  Wang H  Li D  Kong XP  Neubert TA 《Analytical chemistry》2007,79(5):2007-2014
We have developed a new strategy to enrich and fractionate phosphopeptides from peptide mixtures based on the difference in their isoelectric points (pIs) after methyl esterification. After isoelectric focusing (IEF) of a methylated tryptic digest of a mixture of alpha-S-casein and beta-casein, phosphopeptides were selectively enriched at acidic and neutral pHs while nonphosphopeptides left the focusing gel because their pIs are higher than the upper limit of the immobilized pH gradient. We wrote a web-based program, pIMethylation, to predict the pIs for peptides with and without methyl esterification. Theoretical calculations using pIMethylation indicated that methylated phosphopeptides and non-phosphopeptides can be grouped on the basis of the number of phosphate groups and basic residues in each peptide. Our IEF results were consistent with theoretical pIs of methylated peptides calculated by pIMethylation. We also showed that 2,6-dihydroxy-acetophenone is superior to 2,5-dihydroxybenzoic acid as a matrix for MALDI Q-TOF MS of methylated phosphopeptides in both positive and negative ion modes.  相似文献   

8.
The analysis of phosphopeptides by mass spectrometry (MS) is one of the most challenging tasks in proteomics. This is due to the lower isoelectric point (pI) of phosphopeptides, which leads to inefficient sample ionization in MS, particularly when competing with other peptides. The problem is compounded by the typical low abundance of phosphopeptides in biological samples. We describe here a simple nonsorptive method to isolate phosphopeptides based on their pI. A voltage is applied to selectively migrate the phosphopeptides into a capillary, which are negatively charged at acidic pH. The selectively sampled fraction is directly deposited onto MALDI sample target in nanoliter volumes (7-35 nL) for highly sensitive MS detection. No significant sample loss is evident in this procedure; hence, the MS was able to detect the isolated phosphopeptides at trace quantity. In this case, attomole-level detection limit is achieved for synthetic phosphopeptides (nM concentration and nL volume), from a mixture containing other peptides at up to 1 million times higher in concentration. Selective sampling was also applied to the tryptic digest of beta- and alpha-caseins to reveal the multiple phosphorylated peptides at the low-femtomole level using MALDI MS. Knowledge of pI based on the rejection/injection of peptides was found to be useful in peak assignment. To confirm the sequence of the selectively sampled peptides, fraction collection was performed for offline ESI MS/MS analysis.  相似文献   

9.
We have developed a multi-protease approach that allows sensitive and comprehensive mapping of protein phosphorylation sites. The combined application of the low-specificity proteases elastase, proteinase K, and thermolysin in addition to trypsin results in high sequence coverage, a prerequisite for comprehensive phosphorylation site mapping. Phosphopeptide enrichment is performed with the recently introduced phosphopeptide affinity material titansphere. We have optimized the selectivity of the phosphopeptide enrichment with titansphere, without compromising the high recovery rate of approximately 90%. Phosphopeptide-enriched fractions are analyzed with a highly sensitive nanoLC-MS/MS system using a 25-microm-i.d. reversed-phase column, operated at a flow rate of 25 nL/min. The new approach was applied to the murine circadian protein period 2 (mPER2). A total of 21 phosphorylation sites of mPER2 have been detected by the multi-protease approach, whereas only 6 phosphorylation sites were identified using solely trypsin. Titansphere proved to be well suited for the enrichment of a large variety of phosphopeptides, including peptides carrying two, three, or four phosphorylated residues, as well as phosphopeptides containing more basic than acidic amino acids.  相似文献   

10.
Choi H  Lee HS  Park ZY 《Analytical chemistry》2008,80(8):3007-3015
An improved method of detection of multiphosphorylated peptides by RPLC-MS/MS analysis under low pH conditions (pH approximately 1.7, 3% formic acid) is demonstrated for the model phosphoproteins, bovine alpha- and beta-casein. Changes in the pH conditions from normal (pH approximately 3.0, 0.1% formic acid) to low (pH approximately 1.7, 3% formic acid) significantly improved the detection limit of multiphosphorylated peptides carrying negative (-) solution charge states. In particular, bovine beta-casein tetraphosphorylated peptide, was detected with a loading amount of only 50 fmol of trypsin-digested bovine beta-casein under low pH conditions, which is 200 times lower than necessary to detect the peptide under normal pH conditions. In order to understand the low pH effect, various loading amounts of trypsin-digested bovine alpha- and beta-caseins were analyzed by RPLC-MS/MS analyses under two different pH conditions. The question of whether the low pH condition improves the detection of multiphosphorylated peptides by increasing ionization efficiencies could not be proven in this study because synthetic multiphosphorylated peptides could not be easily obtained by peptide synthesis. Interestingly, increased hydrophilicity resulting from multiple phosphorylation events is shown to negatively affect the peptide retention on reversed-phase column material. It was also demonstrated that the low pH condition could effectively enhance the retention of multiphosphorylated peptides on reversed-phase column material. The usefulness of low pH RPLC analysis was tested using an actual phosphopeptide-enriched sample prepared from mouse brain tissues. Previously, low pH solvents have been used in SCX fractionation and TiO2 enrichment processes to selectively enrich phosphopeptides during the phosphopeptide enrichment procedure, but the improved detection of multiphosphorylated peptides in RPLC-MS/MS analysis under low pH conditions has not been reported before (Ballif, B. A.; Villen, J.; Beausoleil, S. A.; Schwartz, D.; Gygi, S. P. Mol. Cell. Proteomics 2004, 3, 1093-1101. Villen, J.; Beausoleil, S. A.; Gerber, S. A.; Gygi, S. P. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 1488-1493. Schlosser, A.; Vanselow, J. T.; Kramer, A. Anal. Chem. 2005, 77, 5243-5250.).  相似文献   

11.
Niobium(V) oxide (Nb2O5): application to phosphoproteomics   总被引:1,自引:0,他引:1  
Proteomics-based analysis of signaling cascades relies on a growing suite of affinity resins and methods aimed at efficient enrichment of phosphorylated peptides from complex biological mixtures. Given the heterogeneity of phosphopeptides and the overlap in chemical properties between phospho- and unmodified peptides, it is likely that the use of multiple resins will provide the best combination of specificity, yield, and coverage for large-scale proteomics studies. Recently titanium and zirconium dioxides have been used successfully for enrichment of phosphopeptides. Here we report the first demonstration that niobium pentoxide (Nb 2O 5) provides for efficient enrichment and recovery ( approximately 50-100%) of phosphopeptides from simple mixtures and facilitates identification of several hundred putative sites of phosphorylation from cell lysate. Comparison of phosphorylated peptides identified from Nb 2O 5 and TiO 2 with sequences in the PhosphoELM database suggests a useful degree of divergence in the selectivity of these metal oxide resins. Collectively our data indicate that Nb 2O 5 provides efficient enrichment for phosphopeptides and offers a complementary approach for large-scale phosphoproteomics studies.  相似文献   

12.
We have developed a simple, highly specific enrichment procedure for phosphopeptides, by increasing the specificity of an immobilized metal affinity column (IMAC) without using any chemical reaction. The method employs a biphasic IMAC-C18 tip, in which IMAC beads are packed on an Empore C18 disk in a 200-microL pipet tip. Phosphopeptides are separated from non-phosphopeptides on the IMAC in an optimized solvent without any chemical reaction, then desorbed from the IMAC using a phosphate buffer, reconcentrated, and desalted on the C18 disk. The increase in selectivity was achieved by (a) using a strong acid to discriminate phosphates from carboxyl groups of peptides and (b) using a high concentration of acetonitrile to remove hydrophobic non-phosphopeptides. The entire procedure was optimized by using known phosphoproteins such as Akt1 kinase and protein kinase A. Although it was difficult to detect phosphopeptides in MALDI-MS spectra of tryptic peptide mixtures before enrichment, after the IMAC procedure, we could successfully detect phosphopeptides with almost no non-phosphopeptides. Next, we constructed an array of IMAC-IMAC/C18 tips, such that number of arrayed tips on a 96-well plate could easily be changed depending on the loading amount of sample. Applying this approach to mouse forebrain resulted in the identification of 162 phosphopeptides (166 phosphorylation sites) from 135 proteins using nano-LC/MS.  相似文献   

13.
It has been shown that oxidatively modified forms of proteins accumulate during oxidative stress, aging, and in some age-related diseases. One of the unique features of protein oxidation by a wide variety of routes is the generation of carbonyl groups. Of major interest in the study of oxidative stress diseases is which proteins in a proteome are being oxidized and the site(s) of oxidation. Based on the fact that proteins are generally characterized through tryptic peptide fragments, this paper reports a method for the isolation of oxidized peptides, which involves (1) derivatization of oxidized proteins with Girard P reagent (GRP; 1-(2-hydrazino-2-oxoethyl)pyridinium chloride), (2) following proteolysis enrichment of the derivatized peptide using strong cation exchange (SCX) chromatography, and (3) identification of oxidation sites using tandem mass spectrometry. Derivatization of aldehydes and ketones in oxidized proteins was accomplished by reacting protein carbonyls with the hydrazide of GRP. The resulting hydrazone bond was reduced by sodium cyanoborohydride to further stabilize the labeling. Derivatization time and concentrations of the derivatizing agent were optimized with model peptides. Oxidized transferrin was used as model protein to study derivatization efficiency at the protein level. Following metal-catalyzed oxidation of transferrin, the protein was derivatized with GRP and trypsin digested. Positively charged peptides were then selected from the digest with SCX chromatography at pH 6.0. Seven GRP-derivatized peptides were found to be selected from transferrin by MALDI-TOF-TOF analysis. Fourteen underivatized native peptides were also captured by the SCX column at pH 6.0. Mapping of the derivatized peptides onto the primary structure of transferrin indicated that the oxidation sites were all on solvent-accessible regions at the protein surface. Efficiency of the method was further demonstrated in the identification of oxidized proteins from yeast.  相似文献   

14.
Sequence verification and mapping of posttranslational modifications require nearly 100% sequence coverage in the "bottom-up" protein analysis. Even in favorable cases, routine liquid chromatography-mass spectrometry detects from protein digests peptides covering 50-90% of the sequence. Here we investigated the reasons for limited peptide detection, considering various physicochemical aspects of peptide behavior in liquid chromatography-Fourier transform mass spectrometry (LC-FTMS). No overall correlation was found between the detection probability and peptide mass. In agreement with literature data, the signal increased with peptide hydrophobicity. Surprisingly, the pI values exhibited an opposite trend, with more acidic tryptic peptides detected with higher probability. A mixture of synthesized peptides of similar masses confirmed the hydrophobicity dependence but showed strong positive correlation between pI and signal response. An explanation of this paradoxal behavior was found through the observation that more acidic tryptic peptide lengths tend to be longer. Longer peptides tend to acquire higher average charge state in positive mode electrospray ionization than more basic but shorter counterparts. The induced-current detection in FTMS favors ions in higher charge states, thus providing the observed pI-FTMS signal anticorrelation.  相似文献   

15.
We have tested the effect of m-nitrobenzyl alcohol (m-NBA) as a method to increase the average charge state of protonated gas-phase molecular ions generated by ESI from tryptic peptides and phosphopeptides. Various concentrations of m-NBA were added to the mobile phases of a liquid chromatography system coupled to an ESI tandem mass spectrometer. Addition of just 0.1% m-NBA changed the average charge state for the identified tryptic BSA peptides from 2.2+ to 2.6+. As a result, the predominant charge states for BSA peptides were changed from 2+ to > or =3+. To evaluate the benefits of peptide charge enhancement, the ETD fragmentation efficiency and Mascot peptide score were compared for BSA peptides in charge states 2+ and 3+. In all cases but one, triply charged peptides fragmented more efficiently than the analogues 2+ peptide ions. On average, triply charged peptides received a 68% higher Mascot score (24 units) than doubly charged peptides. m-NBA also increased the average charge state of phosphopeptides by up to 0.5 charge unit. The ease of implementation and the analytical benefits of charge enhancement of tryptic peptides by addition of m-NBA to the LC solvents suggest the general application of this reagent in proteomic studies that employ ETD-MS/MS and related techniques.  相似文献   

16.
Shi Y  Yao X 《Analytical chemistry》2007,79(22):8454-8462
The first method of isotopic substitution of a nonbridging oxygen atom in pre-existing phosphates on peptides is reported, solving a long-standing, challenging issue in the sample preparation of phosphopeptides. Peptidyl phosphates, phosphate groups on phosphopeptides, are converted to phosphoramidates with carbodiimide assistance. Acid-catalyzed hydrolysis of the newly formed phosphoramidates incorporates one oxygen atom from H2(16)O or H2(18)O, producing peptidyl phosphates-16O1 or -18O1, respectively. The oxygen labels are stable under common separation and analysis conditions. This labeling method causes minimal structural alteration to peptidyl phosphates and allows the direct application of established phosphate-specific marker ions to the mass spectrometric analysis of differentially labeled phosphopeptide pairs. Using phosphotyrosinyl peptides as model analytes, the characteristic 16O1- and 18O1-labeled phosphotyrosine immonium ions at m/z 216.043 and 218.047 are used for developing a method of phosphopeptide quantitation that is independent of the amino acid sequence of the peptides. From analysis by tandem parallel fragmentation mass spectrometry, it is clear that the phosphate-specific marker ions authentically inherit the quantitative information from precursor phosphopeptides. The dynamic range for relative quantitation of differentially labeled phosphopeptides is at least 2 orders of magnitude for experiments run on a quadrupole time-of-flight mass spectrometer. The use of 16O1 and 18O1 labeling for counting the number of phosphate groups on peptides is also demonstrated.  相似文献   

17.
We describe a rapid and efficient method for the identification of phosphopeptides, which we term mass spectrometric (MS) phosphopeptide fingerprinting. The method involves quantitative comparison of proteolytic peptides from native versus completely dephosphorylated proteins. Dephosphorylation of serine, threonine, and tyrosine residues is achieved by in-gel treatment of the separated proteins with hydrogen fluoride (HF). This chemical dephosphorylation results in enrichment of those unmodified peptides that correspond to previously phosphorylated peptides. Quantitative comparison of the signal-to-noise ratios of peaks in the treated versus untreated samples are used to identify phosphopeptides, which can be confirmed and further studied by tandem mass spectrometry (MS/MS). We have applied this method to identify eight known phosphorylation sites of Xenopus Aurora A kinase, as well as several novel sites in the Xenopus chromosome passenger complex (CPC).  相似文献   

18.
Widespread interest in protein phosphorylation has led to the development of a variety of methods for the analysis of phosphoproteomes of different types of organisms. Many applications involve pretreatment of the sample before mass spectrometric measurement and can crucially improve the detection efficiency of individual phosphopeptides. Despite intense research efforts, separation and extraction of phosphorylated peptides, especially multiphosphorylated ones, remain challenging tasks and need to be further explored and expanded with unconventional approaches. In this study, we describe the application of nonretentive solid-phase extraction (SPE) to the analysis of phosphopeptides using the highly cross-linked polystyrene-divinylbenzene material Strata-X. This study indicates that the procedure allows for the preferential extraction of phosphopeptides regardless of their extent of phosphorylation. The Strata-X material primarily retains nonphosphorylated peptides by hydrophobic interaction, whereas the inherent hydrophilicity of phosphorylated peptides leads to their partitioning into the aqueous phase. Phosphopeptides that were rapidly segregated out of tryptic digest mixtures and collected in the early aqueous fractions generated intense signals in mass spectra. The method was developed using SPE Strata-X columns, then suited for detection and sequencing of phosphopeptides by miniaturizing the system to the scale of custom-made microcolumns. This provided fast isolation of phosphopeptides from protein digests along with direct MALDI on-target deposition. The possibility of on-target washing during sample preparation is also presented.  相似文献   

19.
20.
The potential benefits of ultra-low flow electrospray ionization (ESI) for the analysis of phosphopeptides in proteomics was investigated. First, the relative flow dependent ionization efficiency of nonphosphorylated vs multiplyphosphorylated peptides was characterized by infusion of a five synthetic peptide mix with zero to four phophorylation sites at flow rates ranging from 4.5 to 500 nL/min. Most importantly, similar to what was found earlier by Schmidt et al., it has been verified that at flow rates below 20 nL/min the relative peak intensities for the various peptides show a trend toward an equimolar response, which would be highly beneficial in phosphoproteomic analysis. As the technology to achieve liquid chromatography separation at flow rates below 20 nL/min is not readily available, a sheathless capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS) strategy based on the use of a neutrally coated separation capillary was used to develop an analytical strategy at flow rates as low as 6.6 nL/min. An in-line preconcentration technique, namely, transient isotachophoresis (t-ITP), to achieve efficient separation while using larger volume injections (37% of capillary thus 250 nL) was incorporated to achieve even greater sample concentration sensitivities. The developed t-ITP-ESI-MS strategy was then used in a direct comparison with nano-LC-MS for the detection of phosphopeptides. The comparison showed significantly improved phosphopeptide sensitivity in equal sample load and equal sample concentration conditions for CE-MS while providing complementary data to LC-MS, demonstrating the potential of ultra-low flow ESI for the analysis of phosphopeptides in liquid based separation techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号