首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The economic importance of the corrosion and wear of refractory materials is indisputable because these processes determine the viability of any high-temperature liner used in metallurgical processes. The degradation mechanism of lining materials (refractory bricks) in contact with corrosive gases can be studied by examining the penetration rate or the chemical corrosion that results from the circulation of the atmosphere over the refractory material (by diffusional and convective transport). During the sintering of steel containing Mn, the high vapour pressure of Mn enables its sublimation during thermal cycling; therefore, Mn is incorporated into the sintering atmosphere. Although the diffusion of Mn in steel samples is beneficial, the presence of Mn in a sintering atmosphere can modify the composition of refractory components. As a result of atmosphere-refractory interactions, a new phase is formed. In this study, the changes in refractory materials as a function of exposure time to atmospheres containing Mn(g) at the most common sintering temperature, 1120 °C, were investigated. The microstructural changes in the refractory materials and the consequences of the presence of Mn(g) were analysed using optical microscopy, electron microscopy with X-ray (EDS) microanalysis, X-ray diffraction, and X-ray fluorescence (XRF).  相似文献   

2.
An aluminum dross waste from plasma processing for Al metal reclamation was tested as a replacement raw material in refractories. The main phases of the starting Al dross waste material were MgAl2O4 and AlN. The waste was tested to replace calcined alumina in castables and refractory clay in a molded refractory at levels below 6.5%. The results of physical and mechanical tests indicated that the waste may be applied directly, without prior calcination, as a substitute for fine structural components in refractories. The waste and water contents used in processing, however, must be optimized to avoid the formation of crack-like defects in the microstructure. The origin of these defects is related to the generation of gas from the waste at high temperatures. It is not known if these crack defects impact physical properties. The waste was also tested as a replacement for anti-oxidant elements (Al and Si powders) in a resin-bonded refractory. Oxidation tests, however, indicated a negative effect on oxidation resistance.  相似文献   

3.
The mechanism of high-chromia refractory failure in the oxidizing atmosphere of cyclone furnaces differs from the reducing atmosphere in gasifiers. In this paper, postmortem analysis was conducted to investigate the changes in the microstructures of exposed high-chromia refractory caused by its interaction with infiltrating coal slag under cyclone furnace conditions. The effects of the temperature level and viscosity of the molten slag were also investigated. Postmortem analysis confirmed that the form of Fe found in the slag in an oxidizing atmosphere was Fe2O3 rather than FeO, the phase present in a reducing atmosphere of gasifiers. Furthermore, the higher melting temperature of Fe2O3 weakened the slag penetration and chemical corrosion in an oxidizing atmosphere. As coal slag infiltrated a high-chromia refractory, Fe2O3 in the slag reacted with Cr2O3 until Fe2O3 was depleted in the penetrating slag. Cr2O3 was dissolved in the slag because of the permeation of the slag in large pores of the refractory. The depth of the slag penetration increased as the temperature increased because of its lower viscosity at higher temperature.  相似文献   

4.
《Ceramics International》2022,48(8):10990-10998
Low corrosion resistance in an Al alloy is usually overcome with the help of an Al oxide coating. Plasma electrolytic oxidation (PEO) is a highly promising environment-friendly method to achieve a ceramic surface. Traditionally, PEO is carried out in an aqueous electrolyte; however, in this study, PEO was conducted in a molten salt. This approach conserved more energy and led the formation of a pure oxide coating, as confirmed by subsequent phase analysis. The obtained ceramic coating contained two sublayers: a porous outer sublayer and a dense inner sublayer. A study of corrosion evolution was performed on oxide-coated alloys immersed in a NaCl solution for different durations. The corrosion behavior characterized by electrochemical impedance spectroscopy (EIS) was related to the changes in the surface morphology changes examined by electron microscopy. The appearance of pits on the oxide surface was attributed to the adsorption and incorporation theory, previously described for Al alloys. This study revealed that the progress of the corrosion attack by chloride ions affects both sublayers; the thickness of the outer sublayer decreased, and the inner sublayer became more compact, resulting in high resistance properties.  相似文献   

5.
W. Ruland  A.K. Schaper  A. Greiner 《Carbon》2003,41(3):423-427
Multi-wall carbon nanotubes (MWCNT) obtained by catalytic decomposition of iron phthalocyanine are investigated by high resolution electron microscopy and electron diffraction (ED). The evaluation of the ED patterns shows that all MWCNTs studied have a uniform chirality, i.e. all tubes of a given MWCNT show the same chiral angle. The conditions for the formation of nested tubes are discussed. A comparison of the values of the chiral angles with those of the corresponding interwall spacings, both obtained from the ED patterns, leads to the conclusion that these MWCNTs have a scroll structure, very probably consisting of one single rolled-up graphene sheet.  相似文献   

6.
The chemical corrosion and UV–vis absorption and infrared absorption spectra of binary and multicomponent lithium silicate glasses and corresponding glass–ceramics were investigated. The chemical durability of the glasses and derived glass–ceramics was found to be excellent to all leaching media. The IR absorption spectra of the glass and glass–ceramic samples reveal absorption bands of characteristic groups mainly due to major silicate network besides the possible sharing of network units due to some involving oxide constituents. X-ray analysis of glass–ceramics indicates the separation of lithium disilicate phase as the main constituent beside other phases according to the specimen chemical constituents. The obvious promising investigated chemical and physical properties are correlated with the presence of multioxides such as Al2O3, TiO2, MgO and ZrO2. Transmission and reflectivity properties reveal acceptable data. The prepared glass–ceramics are recommended for dental applications.  相似文献   

7.
《Ceramics International》2016,42(5):6301-6311
The objective of this study was to investigate the clay drying as a unit operation in the refractory materials processing. Two clays that varied in chemical and mineralogical compositions were experimentally tested in a laboratory dryer. The results obtained on the green samples prior to drying indicated that clays have adequate plasticity and refractoriness for application in shaped refractories. The operating parameters of the dryer were regulated: temperature ranged from 40 to 60 °C, humidity increased in the interval 30–70%; and the airstream rate was 1.3 m/s. The correlation analysis between operating parameters and calculated and/or measured drying outputs was conducted for better comprehension of the clay׳s role as a refractory binder. Subsequently, a mathematical optimization of the drying regime was conveyed. The effect of the variables (operation parameters) on the drying parameters (critical moisture, equilibrium moisture, dryness degree, etc.) was compared and evaluated. The response surface method, standard score analysis, cluster method, and principal component analysis were used as a means of the drying regime optimization. Assessment of the drying regime impact on the dried samples quality highlighted optimal result for both clay types: SS=0.95, temperature 50 °C, and humidity 40%. Multiple comparison analyses pointed out that optimized combination of the drying operation parameters decreases the quantity of conducted tests. Furthermore, optimal combination of drying parameters reduces negative effects of clay binder inherent properties on the resulting product which in return improves energetic and economic sustainability of refractories production.  相似文献   

8.
Helical carbon nanofibers with a symmetric growth mode   总被引:1,自引:0,他引:1  
Yong Qin 《Carbon》2004,42(10):1917-1922
Helical carbon nanofibers with a symmetric growth mode were synthesized by the decomposition of acetylene with a copper catalyst. There were always only two helical fibers symmetrically grown over a single copper nanocrystal. The two helical fibers had opposite helical senses, but had identical cycle number, coil diameter, coil length, coil pitch, cross section, and fiber diameter. The irregular tips and helical reversals of the two helical fibers further revealed the symmetric growth mode. This mirror-symmetric growth mode was induced by the shape changes in copper nanocrystals during catalyzing the decomposition of acetylene. Upon contacting the initial copper nanocrystals with irregular shapes, acetylene began to decompose to form two straight fibers (the irregular tips). At the same time, shape changes in copper nanocrystals began. Once they changed from an irregular to a regular faceted shape, the two straight fibers ceased to grow and two regular helical nanofibers with opposite helical senses began to grow. If the regular faceted nanocrystals continue to change shapes during fiber growth, the two helical fibers possibly changed helical senses at the same time, resulting in helical reversals. The shape changes were caused by the changes in surface energy resulting from the acetylene-adsorption on the copper nanocrystals.  相似文献   

9.
10.
《Ceramics International》2023,49(2):2373-2379
Hexagonal gadolinium Phosphate Hydrate doped with different europium amounts (Gd1-xPO4:Eux·H2O; x = 0.01, 0.05, 0.10, 0.15, and 0.20) was synthesized by hydrothermal synthesis method and the obtained samples were analyzed giving the optimal dopant concentration. Furthermore, gadolinium was additionally replaced by Lanthanum Gd0.85-yLayPO4:15%Eu (y = 0.25, 0.5, 0.75) in hopes of improving luminescence properties even more. This may be possible due to the fact that LaPO4 exhibits a monoclinic crystal structure, which usually shows better luminescence properties. All of the synthesized compounds were analyzed by X-ray diffraction in order to investigate their crystal structure. SEM analysis was used to characterize the morphology of synthesized particles, while surface area and the pore size of Gd0.85-xLaxPO4:15%Eu samples were measured using Nitrogen adsorption by the BET method and BJH method. The luminescence properties were also characterized and discussed in detail. Lastly, the cytotoxicity study demonstrated that the replacement of gadolinium with lanthanum leads to a reduction in the toxicity of the samples.  相似文献   

11.
12.
The aim of this study was to determine the effect of the microwave and conventional drying method on the strength, porosity and composition of low-cement alumina castables with various water to cement ratios (wcr). High-alumina low-cement castable samples were prepared with different w/c ratios: 0.64, 0.75, 0.82 and 1.13. Changes in wcr were effected through volumetric replacement of cement with 0–0,045-mm tabular alumina having a comparable particle size. Water content in all the composition was constant (4,5%). After curing, the samples were dried conventionally in a laboratory electric drier or in a laboratory microwave drier. After drying open porosity and modulus of rupture were determined. The pore size distribution, pore median and tortuosity of the samples were measured by the mercury porosimetry method. Phase composition was determined using X-ray diffraction. The Rietveld method was used for quantitative analysis. It was found that at low wcr (0.62) the main hydrate formed in the castable was C3AH6, which caused a release of a smaller amount of water during the drying process, mainly pore water, resulting in lower open porosity and lower pore size than in the castables with a high wcr (1.13). At a low wcr, the strenght of castable was higher due to a higher amount of hydrates, low porosity and small pore size. On the other hand, at a high wcr, the strength of castable was lower owing to a higher amount of water released in the drying process, which led to loosening the structure of castable. With an increased water-to-cement ratio the degree of CA2 hydration decreased. The temperature rise due to cement hydration probably influenced the kinetics of this process.  相似文献   

13.
Porous alloys are proposed as supports for the next generation solid oxide fuel cells. Their application lowers the price of the fuel cells, which will result in faster commercialization. However, they are prone to high temperature corrosion. So far, there is lack of methods, which can improve high temperature properties of porous alloys for SOFC applications. A method for improving corrosion resistance of porous alloys has been proposed and investigated here. In this work protective coatings are prepared by the infiltration of precursor solutions that contain Y cations. High temperature oxidation properties of the modified alloys are compared with non-modified samples by cyclic thermogravimetry, electron microscopy and X-ray diffractometry measurements. The infiltration of Y precursor into the porous alloy decreases the high temperature corrosion rate. This method can be used to improve long term properties of porous alloys applied for fuel cells supports.  相似文献   

14.
Thin-film particles of graphite oxide were synthesized in high yield by the modified Hummers’ method, in which a very long oxidation period was combined with a high purity purification process. The particles obtained had an average thickness of several nanometers and an average width of about 20 μm. The yield was 122 wt% based on the raw graphite and the recovery of carbon was 68%. Moreover, excellent flexibility of the particles was observed for the original particle(s) itself, for the particle in matrix polymer, and for two kinds of secondary conformations (lamination-layer-aggregate and random-shape-aggregate). As generally expected and already observed partially, if the affinity between the particle and the dispersion medium was very high, the thin-film particle extended well, though a local crease or a large bend could be generated. At a medium degree of affinity, the particle slightly bent, and at very low affinity, the particle(s) randomly aggregated.  相似文献   

15.
The microstructure and phase composition of alumina-spinel self-flowing refractory castables added with nano-alumina particles at different temperatures are investigated. The physical and mechanical properties of these refractory castables are studied. The results show that the addition of nano-alumina has a great effect on the physical and mechanical properties of these refractory castables. With the increase of nano-alumina content in the castable composition, the mechanical strength is considerably increased at various temperatures. It is shown that nano-alumina particles can affect formed phases after firing. The platy crystals of CA6 are detected inside the grain boundaries of tabular alumina and spinel grains in samples fired at 1500 °C. CA6 phase can be formed at lower temperatures (1300 °C) with the addition of nano-alumina particles. As a result of using nanometer-sized alumina particles with high surface area, the solid phase sintering of the nano-sized particles and CA6 formation can occur at lower temperatures.  相似文献   

16.
《Ceramics International》2016,42(8):10071-10078
This study investigated the influence of different hydrofluoric acid (HF) concentrations and heat treatments applied to a lithium disilicate dental glass-ceramic (EMX) on surface morphology and micro-shear bond strength (μSBS) to resin cement. Five HF concentrations (1%, 2.5%, 5%, 7.5% and 10%) and four different heat treatments applied before etching were assessed: 1. etching at room temperature with no previous heat treatment (control group); 2. HF stored at 70 °C for 1 min applied to the ceramic surface at room temperature; 3. HF at room temperature applied after a hot air stream is applied perpendicularly to the ceramic surface for 1 min; 4. the combination of previously heated HF and heated EMX surface. The etching time was fixed for 20 s for all groups. Etched EMX specimens were analyzed on field-emission scanning electron microscope (FE-SEM) and the μSBS was carried out on a universal testing machine at a crosshead speed of 1 mm/min until fracture. For the control groups, FE-SEM images showed greater glassy matrix dissolution and higher μSBS for 7.5% and 10% HF concentrations. The previous heat treatments enhanced the glassy matrix dissolution more evidently for 1%, 2.5% and 5% and yielded increased μSBS values, which were not statistically different for 7.5% and 10% HF concentrations (control group). HF concentrations and previous heat treatments did show to have an influence on the etching/bonding characteristics to lithium disilicate dental glass-ceramic.  相似文献   

17.
Blended cements are largely used for concrete: they are usually considered cements with a low environmental impact, as they require less clinker than ordinary Portland cement (OPC). Different constituents can be used as supplementary clinker component usually leading to cement with high resistance to outdoor environment. Polishing residue (PR), coming from porcelain stoneware tiles production, can be successfully used as new constituent for blended cement, however its action for enhancing the durability of cement matrix must be assessed. With this purpose, electrochemical tests (half cell potential, impressed voltage and linear polarization techniques) have been carried out on steel reinforced mortar samples, prepared using a 25% PR based cement and 100% OPC as binder and exposed to a 3.5% NaCl solution. The corrosion resistance results and microstructure analysis highlight better durability performances for PR based cement than those exhibited by OPC, mainly for curing time > 28 days.  相似文献   

18.
In the frame of generation IV gas-cooled fast reactor (GFR), the cladding materials currently considered is a SiC/SiC-based composite with a pyrocarbon interphase and a β-SiC coating on the surface to close the porosity (noted β-SiC-SiC/PyC/SiC). These elements are subjected to temperatures going from 1300 to 1500 K in nominal operating conditions to 1900-2300 K in accidental conditions. The coolant gas considered is helium pressurized at 7 MPa.After a thermodynamic study carried out on the oxidation of β-SiC under helium and low oxygen partial pressures, an experimental approach was made on β-SiC-SiC/PyC/SiC composites under active oxidation conditions (1400 ≤ T ≤ 2300 K; 0.2 ≤ pO2 ≤ 2 Pa). This study follows two preceding studies carried out on two polytypes of SiC: α (Part 1) and β (Part 2) under the same conditions. In these studies, the influence of the crystalline structure on the transition temperature between passive and active oxidation and on the mass loss rate was discussed.The experimental study allows to determine the oxidation rates in incidental and accidental conditions under pO2 = 0.2 and 2 Pa. The variation of the mass loss rates according to the temperature for β-SiC-SiC/PyC/SiC oxidized under pO2 = 0.2 and 2 Pa shows the existence of three domains in the zone of active oxidation. These tests also show the weak impact of the oxygen partial pressure on the mass loss rate of the material in this range of pressure for temperatures lower than 2070 K. On the other hand, beyond 2070 K, an increase of the mass loss rate leading to important damage of the material has been observed, at lower temperature under pO2 = 0.2 Pa than under pO2 = 2 Pa. This variation was associated to the effect of the oxygen partial pressure on the sublimation temperature of SiC. Similar experiments were performed on pre-oxidized samples and on the face without CVD β-SiC coating and both the results are close to the ones obtained for the face with the CVD β-SiC layer.  相似文献   

19.
The structure of carbon micro- and nanotubes synthesized by the plasma-enhanced (PE) PE-CVD technique has been investigated by SEM, TEM, SAED and HRTEM. It is shown that tubes are formed by structurally defective versions of conical graphene layers. There are three types of tubes; (1) with a straight inner channel, (2) with a straight channel but helical walls, (3) with a helical channel. In some cases the channel is located very close to the outer surface of the tubes and rotational symmetry of conical layers is violated. The helicity can be explained by anisotropy of the catalytic properties at the nickel-carbon interface. Catalytic particles (CPs) are Ni single crystals, and facets promoting carbon are {1 0 0} and {1 1 0}. It is shown that carbon emitting CP facets are vicinal or non-singular and these govern the structure of the tubes. EELS and chemical mapping revealed that Ni is captured by a growing tube.  相似文献   

20.
The effect of temperature cycling from ?40 to 250?°C on active metal brazing (AMB) substrates for power modules was investigated using newly developed silicon nitride ceramics with both high thermal conductivity of 140?W?m?1 K?1 and superior fracture toughness of 10.5?MPa?m1/2. Other types of AMB substrates made of AlN or Si3N4 were also tested for comparison. Both visual inspection and acoustic scanning microscopy (ASM) observation of the new Si3N4-AMB substrates after 1000 cycles revealed almost no cracks. In contrast, the Si3N4-AMB substrates with lower fracture toughness experienced crack initiation beneath the corner of the copper plate. The degradation in the bending strength after 1000 cycles was negligible for the new Si3N4-AMB substrates, whereas the bending strength of the other substrates decreased gradually with each thermal cycle. The endurance of the AMB substrates to thermal fatigue could be improved significantly by employing the new tough Si3N4 with high thermal conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号